The Effects of CsBr Concentration on the Inorganic Cesium Lead Bromide Perovskite Film Properties and the Performances of Carbon-Based HTM-Free Perovskite Solar Cells

Main Article Content

Vallop Homrahad
Madsakorn Towannang
Pantiwa Kumlangwan
Wirat Jarernboon*
Samuk Pimanpang
Vittaya Amornkitbambung

Abstract

Inorganic cesium lead bromide (ICLB) perovskite films were prepared onto an FTO conductive substrate by a two-step spin-dipping method. PbBr2 films were first coated onto the FTO substrate, and then they were immersed into CsBr solutions at various concentrations: 0.04, 0.06, 0.08, 0.10, and 0.12 M, forming the ICLB perovskite films. The surface morphology of the perovskite films prepared from the CsBr concentrations under 0.08 M had a uniform crystalline surface, but the CsBr concentrations above 0.08 M gave the film a non-uniform structure. XRD spectra of all ICLB films compose of mixed phases of monoclinic-CsPbBr3 and tetragonal-CsPb2Br5. The direct optical bandgap of 2.3 eV corresponded to the CsPbBr3 phase, and the indirect optical bandgap of 2.87-3.10 eV corresponded to the CsPb2Br5 phase. Carbon-based hole-transport-material (HTM) free CsPb2Br5 - CsPbBr3 perovskite solar cells were assembled, and the CsPb2Br5 - CsPbBr3 perovskite solar cells prepared from 0.08 M CsBr concentration delivered the highest efficiency of 2.6%. This was because the 0.08 M-perovskite film had good uniformity, low pinhole defect, and low PbBr2 impurities. Good cell stability, with an efficiency reduction of 10.0% of the initial value after 816 h under ambient environment, was achieved from the 0.08 M CsBr concentration cells.


Keywords: CsBr; inorganic cesium lead bromide perovskite; solar cells; hole transport material free


*Corresponding author: Tel.: (+66) 866408352 Fax: (+66) 043202374


                                             E-mail: wiratja@kku.ac.th

Article Details

Section
Original Research Articles

References

Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051.

Im, J.H., Lee, C.R., Lee, J.W., Park, S.W. and Park, N.G., 2011. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3, 4088-4093.

Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moeh T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Gratzel, M. and Park, N.G., 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2, 591-597.

Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker1, R., Gao1, P., Nazeeruddin, M.K. and Gratzel, M., 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319.

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.S., Hong, Z., You, J., Liu, Y. and Yang, Y., 2014. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542-546.

Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J. and Seok, S., 2015. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234-1237.

Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Baena, J.P.C., Decoppet, J.D., Zakeeruddin, S.M., Nazeeruddin, M.K., Gratzel, M. and Hagfeldt, A., 2016. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2, 1501170, https://doi.org/10.1126/sciadv.1501170.

Li, X., Bi, D., Yi, C., Décoppet, J.D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A. and Grätzel M., 2016. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353, 58-62.

Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N. and Ho-Baillie, A.W.Y., 2020. Solar cell efficiency tables (version 55). Progress in Photovoltaics, 28, 3-15.

Niu, G., Li, W., Meng, F., Wang, L., Dong, H. and Qiu, Y., 2014. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2, 705-710.

Wang, Z., Chenab, B. and Rogach, A.L., 2017. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons, 62, 135-146.

Zhang, X., Xu, B., Zhang, J., Gao, Y., Zheng, Y., Wang, K. and Sun, W., 2016. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Advanced Functional Materials, 26, 4595-4600.

Wang, H.C., Lin, S.Y., Tang, A.C., Singh, B.P., Tong, H.C., Chen, C.Y., Lee, Y.C., Tsai, T.L. and Liu, R.S., 2016. Mesoporous silica particle integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposite (MP-PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition, 55, 8056-8061.

Li, J., Gao, R., Gao, F., Lei, J., Wang, H., Wu, X., Li, J., Liu, H., Hua, X. and Liu, S.F., 2019. Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. Journal of Alloys and Compounds, 818, 152903, https://doi.org/10.1016/j.jallcom.2019.152903.

Li, X., Tan, Y., Lai, H., Li, S., Chen, Y., Li, S., Xu, P. and Yang. J., 2019. All-inorganic CsPbBr3 perovskite solar cells with 10.45% efficiency by evaporation-assisted deposition and setting intermediate energy levels. ACS Applied Materials and Interfaces, 11, 29746-29752.

Chang, X., Li, W., Zhu, L., Liu, H., Geng, H., Xiang, S., Liu J. and Chen, H., 2016. Carbon-based CsPbBr3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Applied Materials and Interfaces, 8, 33649-33655.

Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G. and Cahen, D., 2016. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. The Journal of Physical Chemistry Letters, 7, 167-172.

Sutton, R.J., Eperon, G.E., Miranda, L., Parrott, E.S., Kamino, B.A., Patel, J.B., Horantner, M.T., Johnston, M.B., Haghighirad, A.A., Moore, D.T. and Snaith, H.J., 2016. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Advanced Energy Materials, 6, 1502458, htpps://doi.org/10.1002/aenm.201502458.

Liang, J., Wang, C., Wang, Y., Xu, Z., Lu, Z., Ma, Y., Zhu, H., Hu, Y., Xiao, C., Yi, X., Zhu, G., Lv, H., Ma, L., Chen, T., Tie, Z., Jin, Z. and Liu, J., 2016. All-inorganic perovskite solar cells. Journal of the American Chemical Society, 138, 15829-15832.

Li, J., Zhang, H., Wang, S., Long, D., Li, M., Guo, Y., Zhong, Z., Wu, K., Wang, D. and Zhang, T., 2017. Synthesis of all-inorganic CsPb2Br5 perovskite and determination of its luminescence mechanism. RSC Advances, 7, 54002-54007.

Wang, L., Liu, H., Zhang, Y. and Mohammed, O.F., 2020. Photoluminescence origin of zero dimensional Cs4PbBr6 perovskite. ACS Energy Letters, 5, 87-99.

Murtaza, G. And Ahmad, I., 2011. First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M= Cl, Br, I). Physica B Condensed Matter, 406, 3222-3229.

Qian, J., Xu, B. and Tian, W.A., 2016. Comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 37, 61-73.

Yang, L., Wang, T., Min, Q., Liu, B., Liu, Z., Fan, X., Qiu, J., Xu, X., Yu, J. and Yu, X., 2019. High water resistance of monoclinic CsPbBr3 nanocrystals derived from zero-dimensional cesium lead halide perovskites. ACS Omega, 4, 6084-6091.

Zhang, X., Jin, Z., Zhang, J., Bai, D., Bian, H., Wang, K., Sun, J., Wang, Q. and Liu, S.F., 2018. All-ambient processed binary CsPbBr3–CsPb2Br5 perovskites with synergistic enhancement for high-efficiency Cs–Pb–Br-based solar cells. ACS Applied Materials and Interfaces, 10, 7145-7154.

Duan, J., Zhao, Y., He, B. and Tang, Q., 2018. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angewandte Chemie International Edition, 57, 3787-3791.

Eijkelenkamp, A.J.H. and Vos, K., 1976. Reflectance measurements on single crystals of PbFCl, PbFBr, and PbBr2. Physica Status Solidi (b), 76, 769-778.

Tauc, J., 1968. Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3, 37-46.

Kortüm, G., Braun, W. and Herzog, G., 1963. Principles and techniques of diffuse-reflectance spectroscopy. Angewandte Chemie International Edition, 2, 333-341.

Maes, J., Balcaen, L., Drijvers, E., Zhao, Q., De Roo, J., Vantomme, A., Vanhaecke, F., Geiregat, P. and Hens, Z., 2018. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. The Journal of Physical Chemistry Letters, 9, 3093-3097.

Dursun, I., Bastiani, M.D., Turedi, B., Alamer, B., Shkurenko, A., Yin, J., El-Zohry, A.M., Gereige, I., AlSaggaf, A., Mohammed, O.F., Eddaoudi, M. and Bakr, O.M., 2017. CsPb2Br5 single crystals: Synthesis and characterization. ChemSusChem Communications, 10, 3746-3749.

Tang, M., He, B., Dou, D., Liu, Y., Duan, J., Zhao, Y., Chen, H. and Tang, Q., 2019. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chemical Engineering Journal, 375, 121930, https://doi.org/10.1016/j.cej.2019.121930.

Kumar, N., Rani, J. and Kurchania, R. 2021. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability. Solar Energy, 221, 197-205.

Li, Y., Yang, X. and Xie, A., 2021. Preparation of surface modified CsPbBr3@CsPb2Br5 nanocrystals with high stability by a pseudo-peritectic method. Journal of Luminescence, 236, 118154, https://doi.org/10.1016/j.jlumin.2021.118154.