Evaluation of Coating Ability of TiO2 Nanoparticles onto Aluminum Alloy Sheet by Physicochemical Analysis

Main Article Content

Khatcharin Wetchakun*
Natda Wetchakun

Abstract

TiO2 nanoparticle films were successively coated onto aluminum (Al) alloy sheet using a coating technique at 150°C for 5 h. This was a chemical sintering method, integrated with Al/TiO2/Al sandwich coupling and used weak acid as a binder. To evaluate the coating ability of the TiO2 nanoparticles on the aluminum alloy sheet, the physicochemical characteristics of the film samples were analyzed by means of SEM-EDS, FT-IR and XRD. The TiO2 films prepared by the coating technique at 150°C for 5 h were compared with TiO2 films prepared by the doctor-blade technique at 500°C for 10 min using two different organics as binders. The results of the physicochemical analysis indicated that the coating technique at 150°C for 5 h provided superior coating ability of TiO2 nanoparticles onto aluminum alloy sheet than the doctor-blade technique. This may have been because of reduction of the thermal gradient at the TiO2 interface, which affected the relaxation of internal and external stresses on the TiO2 film on the aluminum alloy substrate. In this work, the TiO2 film prepared by chemical sintering method, integrated with Al/TiO2/Al sandwich coupling at 150°C for 5 h using weak acid mixed with 5 wt.% ammonia as a binder proved to produce the optimum TiO2 film; however, film thickness control using the coating technique at 150°C for 5 h still needs to be developed.


Keywords: aluminum; chemical sintering; wet coating; doctor-blade; thin film; titanium dioxide


*Corresponding author: Tel.: (+66) 45352000-29 Fax: (+66) 45352070


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Li, X.-W., Zhang, Q.-X., Guo, Z., Yu, J.-G., Tang, M.-K. and Huang, X.-J., 2015. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance. RSC Advances, 5(38), 29639-29646.

Pantelakis, S.G. and Alexopoulos, N.D., 2008. Assessment of the ability of conventional and advanced wrought aluminum alloys for mechanical performance in light-weight applications. Materials and Design, 29(1), 80-91.

Zhou, P., Liu, Y., Liu, L., Yu, B., Zhang, T. and Wang, F., 2019. Critical role of pretreatment on the corrosion resistance of Zr conversion coating on 6061 aluminum alloy: The combined effect of surface topography and potential difference between different phases. Surface and Coatings Technology, 377, DOI: 10.1016/j.surfcoat.2019.124904.

Song, H., Wu, W., Liang, J.-W., Maity, P., Shu, Y., Wang, N.S., Mohammed, O.F., Ooi, B.S., Gan, Q. and Liu, D., 2018. Ultrathin-film titania photocatalyst on nanocavity for CO2 reduction with boosted catalytic efficiencies. Global Challenges, 2(11), DOI: 10.1002/gch2.201800032.

Fu, N., Huang, C., Liu, Y., Li, X., Lu, W., Zhou, L., Peng, F., Liu, Y. and Huang, H., 2015. Organic-free anatase TiO2 paste for efficient plastic dye-sensitized solar cells and low temperature processed perovskite solar cells. ACS Applied Materials and Interfaces, 7(34), 19431-19438.

Arrowsmith, D.J. and Clifford, A.W., 1985. A new pretreatment for the adhesive bonding of aluminium. International Journal of Adhesion and Adhesives, 5(1), 40-42.

Withy, B., Hyland, M. and James, B., 2006. Pretreatment effects on the surface chemistry and morphology of aluminium. International Journal of Modern Physics B, 20, 3611-3616.

Xu, Y., Li, H., Shen, Y., Liu, S., Wang, W. and Tao, J., 2016. Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. International Journal of Adhesion and Adhesives, 70, 74-80.

Saleema, N., Sarkar, D.K., Paynter, R.W., Gallant, D. and Eskandarian, M., 2012. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Applied Surface Science, 261, 742-748.

Withy, B., Hyland, M. and James, B., 2006. Pretreatment effects on the surface chemistry and morphology of aluminium. International Journal of Modern Physics B, 20(25-27), 3611-3616.

Kang, H., Tian, W., Wu, J., Zhang, Y., Li, Z. and Pang, G., 2006. Effect of annealing on microstructure and capacitance properties of sol-gel TiO2 film on aluminum. International Journal of Electrochemical Science, 16(1), DOI: 10.20964/2021.01.21.

Zhao, H., Cao, L., Wan, Y., Yang, S., Gao, J. and Pu, J., 2018. Improving wear resistance of aluminum by hydrophobic sol-gel-derived TiO2 film. Industrial Lubrication and Tribology, 70(8), 1408-1413.

Wang, X., Han, F. and Li, Y., 2014. Effect of aluminum foam support and polyethylene glycol on surface morphology and photocatalytic behavior of TiO2 films. Materials Chemistry and Physics, 145(1-2), 68-74.

Wang, X., Han, F. and Wei, X., 2010. Microstructure and photocatalytic activity of mesoporous TiO2 film coated on an aluminum foam. Materials Letters, 64(18), 1985-1988.

Chen, S.Z., Zhang, P.Y., Zhu, W.P. and Chen, L., 2004. Deactivation of TiO2 films on titanium, aluminums and glass substrates. Chinese Journal of Inorganic Chemistry, 20(11), 1265-1272.

Ikeno, S., Kawabata, T., Hayashi, H., Matsuda, K., Rengakuji, S., Suzuki, T., Hatano, Y. and Tanaka, K., 2002. Fabrication of photocatalytic TiO2 films on pure aluminum plates. Materials Transactions, 43(5), 939-945.

Zhu, Y., Zhang, L., Wang, L., Tan, R. and Cao, L., 2001. Interface diffusion and reaction between TiO2 film photocatalyst and aluminium alloy substrate. Surface and Interface Analysis, 32(1), 218-223, DOI: 10.1002/sia.1041.

Levchuk, I., Guillard, C., Dappozze, F., Parola, S., Leonard, D. and Sillanpää, M., 2016. Photocatalytic activity of TiO2 films immobilized on aluminum foam by atomic layer deposition technique. Journal of Photochemistry and Photobiology A: Chemistry, 328, 16-23.

Daviðsdóttir, S., Dirscherl, K., Canulescu, S., Shabadi, R. and Ambat, R., 2013. Nanoscale surface potential imaging of the photocatalytic TiO2 films on aluminum. RSC Advances, 3(45), 23296-23302.

Gunti, S., Alamro, T., McCrory, M. and Ram, M.K., 2017. The use of conducting polymer to stabilize the nanostructured photocatalyst for water remediation. Journal of Environmental Chemical Engineering, 5(6), 5547-5555.

Park, N.-G., Kim, K.M., Kang, M.G., Ryu, K.S., Chang, S.H. and Shin, Y.-J., 2005. Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films. Advanced Materials, 17(19), 2349-2353.

Miyasaka, T., Ikegami, M. and Kijitori, Y., 2007. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania. Journal of The Electrochemical Society, 154(5), A455-A461, DOI: 10.1149/1.2712140.

Lee, K.-M., Wu, S.-J., Chen, C.-Y., Wu, C.-G., Ikegami, M., Miyoshi, K., Miyasaka, T. and Ho, K.-C., 2009. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. Journal of Materials Chemistry, 19(28), 5009-5015.

Weerasinghe, H., Sirimanne, P.M., Simon, G.P. and Cheng, Y., 2009. Fabrication of efficient solar cells on plastic substrates using binder-free ball milled titania slurries. Journal of Photochemistry and Photobiology A: Chemistry, 206(1), 64-70.

Li, Y., Yoo, K., Lee, D.-K., Kim, J.Y., Son, H.J., Kim, J.H., Lee, C.-H., Míguez, H. and Ko, M.J., 2015. Synergistic strategies for the preparation of highly efficient dye-sensitized solar cells on plastic substrates: combination of chemical and physical sintering. RSC Advances, 5(94), 76795-76803.

Bresser, D., Mueller, F., Fiedler, M., Krueger, S., Kloepsch, R., Baither, D., Winter, M., Paillard, E. and Passerini, S., 2013. Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material. Chemistry of Materials, 25(24), 4977-4985.

Li, Y., Lee, W., Lee, D.-K., Kim, K., Park, N.-G. and Ko, M.J., 2011. Pure anatase TiO2 “nanoglue”: An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells. Applied Physics Letter, 98(10), DOI: 10.1063/1.3562030.

Yang, H. and Jiang, P., 2010. Large-scale colloidal self-assembly by doctor blade coating. Langmuir, 26(16), 13173-13182.

Takahashi, S., Neuville, D.R. and Takebe, H., 2015. Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses. Journal of Non-Crystalline Solids, 411, 5-12.

Poh, S., Ahmad, H., Ting, C., Tung, H. and Jun, H., 2021. Performances of flexible dye-sensitized solar cells fabricated with binder-free nanostructure TiO2. Journal of Materials Science: Materials in Electronics, 32(9), 12031-12041.

Haul, R., Gregg, S.J. and Sing, K.S.W. 1982. Adsorption, Surface Area and Porosity. London: Academic Press.

Jamwal, A., Vates, U.K., Gupta, P., Aggarwal, A. and Sharma, B.P. 2019. Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites. In: K. Shanker, R. Shankar and R. Sindhwani, eds. Advances in Industrial and Production Engineering . Lecture Notes in Mechanical Engineering. Singapore: Springer, pp. 349-356.

Kim, J.-I., Kim, J.-K. and Jang, Y.-J., 2019. Stress relaxation through thermal gradient structure of tetrahedral amorphous carbon thin film deposited on Ge–Se–Sb-based chalcogenide glass. Diamond and Related Materials, 100, DOI: 10.1016/j.diamond.2019.107547.

Qin, X., Jing, L., Tian, G., Qu, Y. and Feng, Y., 2009. Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. Journal of Hazardous Materials, 172(2-3), 1168-1174.

Hu, W., Wan, L., Liu, X., Li, Q. and Wang, Z., 2011. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol–gel technique. Applied Surface Science, 257(13), 5777-5783.

Zawrah, M.F., Defrawy, S.A.E., Ali, O.A.M., Sadek, H.E.H. and Ghanaym, E.E., 2018. Recycling of LCW produced form water plants for synthesizing of nano FeO(OH), Al(OH)3, and layered double hydroxide: Effect of heat-treatment. Ceramics International, 44(8), 9950-9957.

Zhang, Y., Chang, J., Zhao, J. and Fang, Y., 2018. Nanostructural characterization of Al(OH)3 formed during the hydration of calcium sulfoaluminate cement. Journal of the American Ceramic Society, 101(9), 4262-4274.