Characterization, Genome Analysis and Probiotic Properties of L-Lactic Acid Producing Enterococcus lactis FM11-1

Main Article Content

Rattanatda Nuhwa
Naoto Tanaka
Yuh Shiwa
Nobuyuki Fujita
Jaruwan Sitdhipol
Neungnut Chaiyawan
Ancharida Savarajara
Somboon Tanasupawat *


Strain FM11-1 was isolated from flowers of Solanum torvum that were collected in Nakhon Si Thammarat Province, Thailand and was characterized using a polyphasic approach as Gram-positive, facultatively anaerobic with short chains and catalase-negative cocci. This strain produced L-lactic acid from glucose and was closely related to Enterococcus durans NBRC 100479T, Enterococcus faecium NRIC 1145T, Enterococcus hirae ATCC 9790T, Enterococcus lactis LMG 25958T and Enterococcus ratti DSM 15687T (98.92-99.73 %) based on 16S rRNA gene sequence similarity. The draft genome of strain FM11-1 had 2,784,928 bp and contained 2,586 coding sequences, with a genomic G+C content of 38.07 mol%. Values of ANIb, ANIm and digital DNA-DNA hybridization (dDDH) between strain FM11-1 and the closest strain, E. lactis LMG 25958T were 97.23%, 98.30% and 83.7%, respectively. The predominant cellular fatty acids were C19:0 cyclo w8c and C16:0. This strain was identified as Enterococcus lactis using polyphasic characterization and genome analysis. Strain FM11-1 contained genes involved in carbohydrate fermentation and specialty genes of antibiotic resistance. This strain showed adhesion ability (0.43±0.11) on Caco-2 cells but had no cytotoxicity against Caco-2, HepG2 and Vero cells.

Keywords: Enterococcus lactis; flower; genome analysis; polyphasic taxonomy; probiotics

*Corresponding author: Tel.: (+66) 2-2188376 Fax: (+66) 221883761




Download data is not yet available.

Article Details

Research Articles


Rahkila, R., Johansson, P., Säde, E. and Björkroth, J., 2011. Identification of enterococci from broiler products and a broiler processing plant and description of Enterococcus viikkiensis sp. nov. Applied and Environmental Microbiology, 77(4), 1196-1203.

Braïek, O.B. and Smaoui, S., 2019. Enterococci: between emerging pathogens and potential probiotics. BioMed Research International, 2019, 5938210, 5938210.

Araújo, T.F. and Ferreira, C.L.L.F., 2013.The genus Enterococcus as probiotic: safety concerns. Brazilian Archives of Biology and Technology, 56(3), 457-466.

Franz, C.M., Huch, M., Abriouel, H., Holzapfel, W. and Gálvez, A., 2011. Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151(2), 125-140.

Hanchi, H., Mottawea, W., Sebei, K. and Hammami, R., 2018. The genus Enterococcus: between probiotic potential and safety concerns—an update. Frontiers in Microbiology, 9, 1791,

Švec, P. and Devriese, L.A., 2009. Genus I. Enterococcus (ex Thiercelin and Jouhaud 1903) Schleifer and Kilpper-Ba¨lz 1984, 32VP. In: P. De Vos, G.M. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey, K.H. Schleifer and W.B. Whitman, eds. Bergey’s Manual of Systematic Bacteriology, the Firmicutes. New York: Springer, pp. 594-607.

Nami, Y., Bakhshayesh, R.V., Jalaly, H.M., Lotfi, H., Eslami, S. and Hejazi, M.A., 2019. Probiotic properties of Enterococcus isolated from artisanal dairy products. Frontiers in Microbiology, 10, 300,

Shastry, R.P., Arunrenganathan, R.R. and Rai, V.R., 2021. Characterization of probiotic Enterococcus lactis RS5 and purification of antibiofilm enterocin. Biocatalysis and Agricultural Biotechnology, 31, 101897,

Tezel, B.U., 2019. Preliminary in vitro evaluation of the probiotic potential of the bacteriocinogenic strain Enterococcus lactis PMD74 isolated from ezine cheese. Journal of Food Quality, 2019, 4693513,

Ghatani, K. and Tamang, B., 2017. Assessment of probiotic characteristics of lactic acid bacteria isolated from fermented yak milk products of Sikkim, India: Chhurpi, Shyow, and Khachu. Food Biotechnology, 31(3), 210-232.

Braïek, O.B., Morandi, S., Cremonesi, P., Smaoui, S., Hani, K. and Ghrairi, T., 2018. Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT, 92, 361-370.

Hung, W.W., Chen, Y.H., Tseng, S.P., Jao, Y.T., Teng, L.J. and Hung, W.C., 2019. Using groEL as the target for identification of Enterococcus faecium clades and 7 clinically relevant Enterococcus species. Journal of Microbiology, Immunology and Infection, 52(2), 255-264.

Li, X., Xing, J., Li, B., Wang, P. and Liu, J., 2012. Use of tuf as a target for sequence-based identification of Gram-positive cocci of the genus Enterococcus, Streptococcus, coagulase-negative Staphylococcus, and Lactococcus. Annals of Clinical Microbiology and Antimicrobials, 11(1), 1-6.

Deurenberg, R.H., Bathoorn, E., Chlebowicz, M.A., Couto, N., Ferdous, M., García-Cobos, S. and Rossen, J.W., 2017. Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology, 243, 16-24.

MacCannell, D., 2016. Next generation sequencing in clinical and public health microbiology. Clinical Microbiology Newsletter, 38(21), 169-176.

Motro, Y. and Moran-Gilad, J., 2017. Next-generation sequencing applications in clinical bacteriology. Biomolecular Detection and Quantification, 14, 1-6.

Nuhwa, R., Tanasupawat, S., Taweechotipatr, M., Sitdhipol, J. and Savarajara, A., 2019. Bile salt hydrolase activity and cholesterol assimilation of lactic acid bacteria isolated from flowers. Journal of Applied Pharmaceutical Science, 9(6), 106-110.

De Man, J.C., Rogosa, D. and Sharpe, M.E., 1960. A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 23(1), 130-135.

Barrow, G.I. and Feltham, R.K.A., 1993. Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd ed. Cambridge: Cambridge University Press.

Tanasupawat, S., Thongsanit, J., Okada, S. and Komagata, K., 2002. Lactic acid bacteria isolated from soy sauce mash in Thailand. Journal of General and Applied Microbiology, 48(4), 201-209.

Phalip, V., Schmitt, P. and Divies, C., 1994. A method for screening diacetyl and acetoin‐producing bacteria on agar plates. Journal of Basic Microbiology, 34(4), 277-280.

Okada, S., Toyoda, T. and Kozaki, M., 1978. An easy method for the determination of the optical types of lactic acid produced by lactic acid bacteria. Agricultural and Biological Chemistry, 42(9), 1781-1783.

Thitiprasert, S., Kodama, K., Tanasupawat, S., Prasitchoke, P., Rampai, T., Prasirtsak, B., Tolieng, V., Piluk, J., Assabumrungrat, S. and Thongchul, N., 2017. A homofermentative Bacillus sp. BC-001 and its performance as a potential L-lactate industrial strain. Bioprocess and Biosystems Engineering, 40(12), 1787-1799.

Kämpfer, P. and Kroppenstedt, R.M., 1996. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Canadian Journal of Microbiology, 42(10), 989-1005.

Sasser, M., 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101, Microbial ID. Inc., Newark, DE.

Tamaoka, J. and Komagata, K., 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiology Letters, 25, 125-128.

Yamada, K. and Komagata, K., 1970. Taxonomic studies on coryneform bacteria III. DNA base composition of coryneform bacteria. Journal of General and Applied Microbiology, 16(3), 215-224.

Lane DJ.,1991. 16S/23S rRNA sequencing. In: E. Stackebrandt and M. Goodfellow, eds. Nucleic Acid Techniques in Bacterial Systematics. Chichester: Wiley, pp. 115-148.

Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

Kumar, S., Stecher, G. and Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791.

Tanizawa, Y., Fujisawa, T. and Nakamura, Y., 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics, 34(6), 1037-1039.

Richter, M. and Rosselló-Móra, R., 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126-19131.

Richter, M., Rosselló-Móra, R., Oliver Glöckner, F. and Peplies, J., 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics, 32(6), 929-931.

Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P. and Göker, M., 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14(1), 1-14.

Meier-Kolthoff, J.P. and Göker, M., 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10(1), 1-10.

Lefort, V., Desper, R. and Gascuel, O., 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10), 2798-2800.

Wattam, A.R., Davis, J.J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad, N., Dietrich, E.M., Disz, T., Gabbard, J.L. and Gerdes, S., 2017. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Research, 45(D1), D535-D542.

Fernández, M.F., Boris, S. and Barbes, C., 2003. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. Journal of Applied Microbiology, 94(3), 449-455.

Bustos, I., Garcia-Cayuela, T., Hernandez-Ledesma, B., Pelaez, C., Requena, T. and Martínez-Cuesta, M.C., 2012. Effect of flavan-3-ols on the adhesion of potential probiotic lactobacilli to intestinal cells. Journal of Agricultural and Food Chemistry, 60(36), 9082-9088.

Iyer, C., Kosters, A., Sethi, G., Kunnumakkara, A.B., Aggarwal, B.B. and Versalovic, J., 2008. Probiotic Lactobacillus reuteri promotes TNF‐induced apoptosis in human myeloid leukemia‐derived cells by modulation of NF‐κB and MAPK signalling. Cellular Microbiology, 10(7), 1442-1452.

Shokryazdan, P., Jahromi, M.F., Bashokouh, F., Idrus, Z. and Liang, J.B., 2018. Antiproliferation effects and antioxidant activity of two new Lactobacillus strains. Brazilian Journal of Food Technology, 21, e2016064,

Morandi, S., Cremonesi, P., Povolo, M. and Brasca, M., 2012. Enterococcus lactis sp. nov., from Italian raw milk cheeses. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_8), 1992-1996.

Collins, M.D., Jones, D., Farrow, J.A.E., Kilpper-Balz, R. and Schleifer, K.H., 1984. Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 34(2), 220-223.

Teixeira, L.M., Carvalho, M.G., Espinola, M.M., Steigerwalt, A.G., Douglas, M.P., Brenner, D.J. and Facklam, R.R., 2001. Enterococcus porcinus sp. nov. and Enterococcus ratti sp. nov., associated with enteric disorders in animals. International Journal of Systematic and Evolutionary Microbiology, 51(5), 1737-1743.

Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P. and Tiedje, J.M., 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57(1), 81-91.

Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Duprè, I. and Sechi, L.A., 2003. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International Journal of Food Microbiology, 88(2-3), 291-304.

Ahmed, M.O. and Baptiste, K.E., 2018. Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microbial Drug Resistance, 24(5), 590-606.

Sharma, S., Singh, R.L. and Kakkar, P., 2011. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food and Chemical Toxicology, 49(4), 770-779.

Nami, Y., Haghshenas, B., Haghshenas, M., Abdullah, N. and Khosroushahi, A.Y., 2015. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells. Frontiers in Microbiology, 6, 1317,

Guan, C., Chen, X., Jiang, X., Zhao, R., Yuan, Y., Chen, D., Zhang, C., Lu, M., Lu, Z. and Gu, R., 2020. In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances, 10(41), 24234-24240.

Conway, P.L. and Kjelleberg, S., 1989. Protein-mediated adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium. Microbiology, 135(5), 1175-1186.

Granato, D., Perotti, F., Masserey, I., Rouvet, M., Golliard, M., Servin, A. and Brassart, D., 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Applied and Environmental Microbiology, 65(3), 1071-1077.

Adlerberth, I., Ahrne, S.I.V., Johansson, M.L., Molin, G., Hanson, L.A. and Wold, A.E., 1996. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Applied and Environmental Microbiology, 62(7), 2244-2251.

Sarem, F., Sarem‐Damerdji, L.O. and Nicolas, J.P., 1996. Comparison of the adherence of three Lactobacillus strains to Caco‐2 and Int‐407 human intestinal cell lines. Letters in Applied Microbiology, 22(6), 439-442.

Thamacharoensuk, T., Taweechotipatr, M., Kajikawa, A., Okada, S. and Tanasupawat, S., 2017. Induction of cellular immunity interleukin-12, antiproliferative effect, and related probiotic properties of lactic acid bacteria isolated in Thailand. Annals of Microbiology, 67(8), 511-518.

Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food, 2012. Guidelines for the evaluation of probiotics in food. [online] Available at: