Nano Resveratrol and Its Anticancer Activity

Main Article Content

Deepika Balasubramanian
Agnishwar Girigoswami
Koyeli Girigoswami*

Abstract

Cancer is one of the leading causes of death in the world, and there are various treatments for cancer. Although most of them cause adverse side effects, plant-based phytochemicals are studied for their anticancer properties to overcome these limitations. Among these, resveratrol has shown a prominent anticancer activity against different types of cancers such as ovarian, colorectal, breast, and liver cancers. Despite its pharmacological activities, resveratrol possesses some physiological and pharmacokinetic limitations including low bioavailability and poor solubility, and several other factors, and these limit the usage of resveratrol as an anticancer agent. These limitations of resveratrol can be rectified with the help of nanotechnology whereby resveratrol is nanoformulated with various types of nanoparticles including polymers, liposomes, dendrimers, and metals, which have different nanostructures such as spears, rods, and nanoflowers. Some of these have shown promising effects against the proliferation and migration of various types of cancer when used at low drug concentrations. Scientists have also observed the synergistic effects of nanoformulated resveratrol with other components. In this review, we discuss nano resveratrol and its anticancer activity against various types of cancer.


Keywords: nanoformulation; bionanotechnology; anticancer; nano resveratrol; bioavailability


*Corresponding author: Tel.: (+91)-9600060358


                                             E-mail: koyelig@gmail.com

Article Details

Section
Review Ariticle

References

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209-249, DOI: 10.3322/caac.21660.

Tang, F., Liu, S., Li, Q.Y., Yuan, J., Li, L., Wang, Y., Yuan, B.F. and Feng, Y.Q., 2019. Location analysis of 8-oxo-7, 8-dihydroguanine in DNA by polymerase-mediated differential coding. Chemical Science, 10(15), 4272-4281.

Tang, F., Yuan, J., Yuan, B.F. and Wang, Y., 2022. DNA–Protein Cross-Linking Sequencing for Genome-Wide Mapping of Thymidine Glycol. Journal of the American Chemical Society, 144(1), 454-462.

Tian, B. and Liu, J., 2020. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. Journal of the Science of Food and Agriculture, 100(4), 1392-1404, DOI: 10.1002/jsfa.10152.

Annaji, M., Poudel, I., Boddu, S.H., Arnold, R.D., Tiwari, A.K. and Babu, R.J., 2021. Resveratrol‐loaded nanomedicines for cancer applications. Cancer Reports, 4(3), DOI: 10.1002/cnr2.1353.

Ahmadi, R. and Ebrahimzadeh, M.A., 2020. Resveratrol–A comprehensive review of recent advances in anticancer drug design and development. European Journal of Medicinal Chemistry, 200, DOI: 10.1016/j.ejmech.2020.112356.

Bommagani, S., Penthala, N.R., Balasubramaniam, M., Kuravi, S., Caldas-Lopes, E., Guzman, M.L., Balusu, R. and Crooks, P.A., 2019. A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorganic and Medicinal Chemistry Letters, 29(2), 172-178, DOI: 10.1016/j.bmcl.2018.12.006.

Lin, C.C., Chin, Y.T., Shih, Y.J., Chen, Y.R., Chung, Y.Y., Lin, C.Y., Hsiung, C.N., Whang-Peng, J., Lee, S.Y., Lin, H.Y. and Davis, P.J., 2019. Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. Journal of Dental Sciences, 14(3), 255-262, DOI: 10.1016/j.jds.2019.01.013.

Haribabu, V., Girigoswami, K., Sharmiladevi, P. and Girigoswami, A., 2020. Water–nanomaterial interaction to escalate twin-mode magnetic resonance imaging. ACS Biomaterials Science and Engineering, 6(8), 4377-4389, DOI: 10.1021/acsbiomaterials. 0c00409.

Girigoswami, A., Mitra Ghosh, M., Pragya, P., Seenuvasan, R. and Girigoswami, K., 2021. Nanotechnology in detection of food toxins–focus on the dairy products. Biointerface Research in Applied Chemistry, 11, 14155-14172.

Owoyokun, T., Berumen, C.M.P., Luévanos, A.M., Cantú, L. and Ceniceros, A.C.L., 2020. Cellulose nanocrystals: obtaining and sources of a promising bionanomaterial for advanced applications. Biointerface Research in Applied Chemistry, 11(4), 11797-11816, DOI: 10.33263/BRIAC114.1179711816.

Kumar, R., Raizada, P., Ahamad, T., Alshehri, S.M., Van Le, Q., Alomar, T.S., Nguyen, V.H., Selvasembian, R., Thakur, S., Nguyen, D.C., Singh, P., 2022. Polypyrrole-based nanomaterials: A novel strategy for reducing toxic chemicals and others related to environmental sustainability applications. Chemosphere, 303, DOI: 10.1016/j.chemosphere. 2022.134993.

Girigoswami, K. and Girigoswami, A., 2021. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocrine, Metabolic and Immune Disorders-Drug Targets, 21(1), 12-26, DOI: 10.2174/1871530320666200515115723.

Sharmiladevi, P., Breghatha, M., Dhanavardhini, K., Priya, R., Girigoswami, K. and Girigoswami, A., 2021. Efficient Wormlike Micelles for the Controlled Delivery of Anticancer Drugs. Nanoscience and Nanotechnology-Asia, 11(3), 350-356, DOI: 10.2174/2210681210999200728115601.

Kavya, J., Amsaveni, G., Nagalakshmi, M., Girigoswami, K., Murugesan, R. and Girigoswami, A., 2013. Silver nanoparticles induced lowering of BCl2/Bax causes Dalton's Lymphoma tumour cell death in mice. Journal of Bionanoscience, 7(3), 276-281.

De, S., Gopikrishna, A., Keerthana, V., Girigoswami, A. and Girigoswami, K., 2021. An Overview of nanoformulated nutraceuticals and their therapeutic approaches. Current Nutrition and Food Science, 17(4), 392-407.

Agraharam, G., Girigoswami, A. and Girigoswami, K., 2021. Nanoencapsulated Myricetin to improve antioxidant activity and bioavailability: A study on zebrafish embryos. Chemistry, 4(1), DOI: 10.3390/chemistry4010001.

Aghazadeh, T., Bakhtiari, N., Rad, I.A. and Ramezani, F., 2021. Formulation of Kaempferol in nanostructured lipid carriers (NLCs): A delivery platform to sensitization of MDA-MB468 breast cancer cells to Paclitaxel. Biointerface Research in Applied Chemistry, 11(6), 14591-14601, DOI: 10.33263/BRIAC116.1459114601.

Sabir, F., Barani, M., Rahdar, A., Bilal, M. and Nadeem, M., 2021. How to face skin cancer with nanomaterials: A review. Biointerface Research in Applied Chemistry, 11(4), 11931-11955, DOI: 10.33263/BRIAC114.1193111955.

Sharma, U.R. and Sharma, N., 2021. Green synthesis, anti-cancer and corrosion inhibition activity of Cr2O3 nanoparticles. Biointerface Research in Applied Chemistry, 11, 8402-8412, DOI: 10.33263/BRIAC111.84028412.

Jain, V., Kumar, H., Anod, H.V., Chand, P., Gupta, N.V., Dey, S. and Kesharwani, S.S., 2020. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. Journal of Controlled Release, 326, 628-647, DOI: 10.1016j.jconrel.2020. 07.003.

Gadag, S., Sinha, S., Nayak, Y., Garg, S. and Nayak, U.Y., 2020. Combination therapy and nanoparticulate systems: Smart approaches for the effective treatment of breast cancer. Pharmaceutics, 12(6), DOI: 10.3390/pharmaceutics12060524.

Grewal, I.K., Singh, S., Arora, S. and Sharma, N., 2021. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Research in Applied Chemistry, 11, 11151-11171, DOI: 10.33263/BRIAC114.1115111171.

Wang, W., Zhang, L., Chen, T., Guo, W., Bao, X., Wang, D., Ren, B., Wang, H., Li, Y., Wang, Y. and Chen, S., 2017. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules, 22(11), DOI: 10.3390/molecules 22111814.

Gregoriou, Y., Gregoriou, G., Yilmaz, V., Kapnisis, K., Prokopi, M., Anayiotos, A., Strati, K., Dietis, N., Constantinou, A.I. and Andreou, C., 2021. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics, 5(1), 113-124, DOI: 10.7150/ntno.51955.

Gadag, S., Narayan, R., Nayak, A.S., Ardila, D.C., Sant, S., Nayak, Y., Garg, S. and Nayak, U.Y., 2021. Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy. International Journal of Pharmaceutics, 606, DOI: 10.1016/j.ijpharm.2021.120877.

Shrivastava, N., Parikh, A., Dewangan, R.P., Biswas, L., Verma, A.K., Mittal, S., Ali, J., Garg, S. and Baboota, S., 2022. Solid Self-Nano emulsifying nanoplatform loaded with Tamoxifen and Resveratrol for treatment of breast cancer. Pharmaceutics, 14(7), DOI: 10.3390/pharmaceutics14071486.

Antoniraj, M.G., Dhayanandamoorthy, Y., Kumar, P., Kandasamy, R., Balan, D.J. and Devi, K.P., 2022. Design and evaluation of redox responsive disulfide containing resveratrol loaded nanocarrier anti-cancer activity in the MDA-MB-231 cell line. Materials Today Communications, 32, DOI: 10.1016/j.mtcomm.2022.103873.

Hai, L., He, D., He, X., Wang, K., Yang, X., Liu, J., Cheng, H., Huang, X. and Shangguan, J., 2017. Facile fabrication of a resveratrol loaded phospholipid @ reduced graphene oxide nanoassembly for targeted and near-infrared laser-triggered chemo/photothermal synergistic therapy of cancer in vivo. Journal of Materials Chemistry B, 5(29), 5783-5792, DOI: 10.1039/ C7TB01600J.

Elzoghby, A.O., El-Lakany, S.A., Helmy, M.W., Abu-Serie, M.M. and Elgindy, N.A., 2017. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine, 12(24), 2785-2805, DOI: 10.2217/nnm-2017-0247.

Fan, C., Kong, F., Shetti, D., Zhang, B., Yang, Y. and Wei, K., 2019. Resveratrol loaded oxidized mesoporous carbon nanoparticles: A promising tool to treat triple negative breast cancer. Biochemical and Biophysical Research Communications, 519(2), 378-384, DOI: 10.1016/j.bbrc.2019.09.016.

El-Far, S.W., Helmy, M.W., Khattab, S.N., Bekhit, A.A., Hussein, A.A. and Elzoghby, A.O., 2018. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine, 13(5), 481-499, DOI: 10.2217/ nnm-2017-0301.

Jain, S., Garg, T., Kushwah, V., Thanki, K., Agrawal, A.K. and Dora, C.P., 2017. α-Tocopherol as functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for improved bioavailability and prophylaxis of breast cancer. Journal of Drug Targeting, 25(6), 554-565, DOI: 10.1080/1061186X.2017.1298603.

Ghorbani, M., Hamishehkar, H. and Tabibiazar, M., 2018. BSA/Chitosan polyelectrolyte complex: a platform for enhancing the loading and cancer cell-uptake of resveratrol. Macromolecular Research, 26(9), 808-813, DOI: 10.1007/s13233-018-6112-2.

Poonia, N., Narang, J.K., Lather, V., Beg, S., Sharma, T., Singh, B. and Pandita, D., 2019. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids and Surfaces B: Biointerfaces, 181, 756-766, DOI: 10.1016/j.colsurfb.2019.06.004.

Thipe, V.C., Amiri, K.P., Bloebaum, P., Karikachery, A.R., Khoobchandani, M., Katti, K.K., Jurisson, S.S. and Katti, K.V., 2019. Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. International Journal of Nanomedicine, 14, DOI: 10.2147/IJN.S204443.

Xu, X., Liu, A., Bai, Y., Li, Y., Zhang, C., Cui, S., Piao, Y. and Zhang, S., 2019. Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells. Journal of Drug Delivery Science and Technology, 51, 746-753, DOI: 10.1016/j.jddst.2018.05.008.

Zhao, Y.N., Cao, Y.N., Sun, J., Liang, Z., Wu, Q., Cui, S.H., Zhi, D.F., Guo, S.T., Zhen, Y.H. and Zhang, S.B., 2020. Anti-breast cancer activity of resveratrol encapsulated in liposomes. Journal of Materials Chemistry B, 8(1), 27-37, DOI: 10.1039/c9tb02051a.

Wang, L., Lu, B., He, M., Wang, Y., Wang, Z. and Du, L., 2022. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Frontiers in Public Health, 10, DOI: 10.3389/fpubh.2022.811044.

Nassir, A.M., Shahzad, N., Ibrahim, I.A., Ahmad, I., Md, S. and Ain, M.R., 2018. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharmaceutical Journal, 26(6), 876-885, DOI: 10.1016/j.jsps.2018.03.009.

Chaudhary, Z., Subramaniam, S., Khan, G.M., Abeer, M.M., Qu, Z., Janjua, T., Kumeria, T., Batra, J. and Popat, A., 2019. Encapsulation and controlled release of resveratrol within functionalized mesoporous silica nanoparticles for prostate cancer therapy. Frontiers in Bioengineering and Biotechnology, 225, DOI: 10.3389/fbioe.2019.00225.

Thandra, K. C., Barsouk, A., Saginala, K., Aluru, J. S. and Barsouk, A., 2021. Epidemiology of lung cancer. Contemporary Oncology (Poznan, Poland), 25(1), 45-52.

Karthikeyan, S., Prasad, N.R., Ganamani, A. and Balamurugan, E., 2013. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomedicine and Preventive Nutrition, 3(1), 64-73, DOI: 10.1016/j.bionut.2012. 10.009.

Song, Z., Shi, Y., Han, Q. and Dai, G., 2018. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomedicine and Pharmacotherapy, 105, 18-26, DOI: 10.1016/j.biopha.2018.05.095.

Aldawsari, H.M., Alhakamy, N.A., Padder, R., Husain, M. and Md, S., 2020. Preparation and characterization of chitosan coated plga nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in H1299 lung cancer cells. Coatings, 10(5), DOI: 10.3390/coatings10050439.

Kamel, R., El-Deeb, N.M. and Abbas, H., 2022. Development of a potential anti-cancer pulmonary nanosystem consisted of chitosan-doped LeciPlex loaded with resveratrol using a machine learning method. Journal of Drug Delivery Science and Technology, 70, DOI: 10.1016/j.jddst.2022.103259.

Xi, Y. and Xu, P., 2021. Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), DOI: 10.1016/j.jddst.2022.103259.

Feng, M., Zhong, L.X., Zhan, Z.Y., Huang, Z.H. and Xiong, J.P., 2017. Enhanced antitumor efficacy of resveratrol-loaded nanocapsules in colon cancer cells: physicochemical and biological characterization. European Review for Medical and Pharmacological Sciences, 21(2), 375-382.

Kuo, I.M., Lee, J.J., Wang, Y.S., Chiang, H.C., Huang, C.C., Hsieh, P.J., Han, W., Ke, C.H., Liao, A.T. and Lin, C.S., 2020. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro-hyperthermia. BMC Cancer, 20(1), DOI: 10.1186/s12885-020-07072-0.

Irfan, M., Delgado, R.Z.R. and Frias-Lopez, J., 2020. The oral microbiome and cancer. Frontiers in Immunology, 11, DOI: 10.3389/fimmu.2020.591088.

Pradhan, R., Chatterjee, S., Hembram, K.C., Sethy, C., Mandal, M. and Kundu, C.N., 2021. Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. The Journal of Nutritional Biochemistry, 92, DOI: 10.1016/j.jnutbio.2021.108624.

Anwanwan, D., Singh, S.K., Singh, S., Saikam, V. and Singh, R., 2020. Challenges in liver cancer and possible treatment approaches. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1873(1), DOI: 10.1016/j.bbcan.2019.188314.

Wu, M., Lian, B., Deng, Y., Feng, Z., Zhong, C., Wu, W., Huang, Y., Wang, L., Zu, C. and Zhao, X., 2017. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors. Journal of Biomaterials Applications, 32(2), 191-205.

Zhang, D., Zhang, J., Zeng, J., Li, Z., Zuo, H., Huang, C. and Zhao, X., 2019. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. Journal of Biomedical Nanotechnology, 15(2), 288-300.

Zhang, Y., Luo, G., Li, M., Guo, P., Xiao, Y., Ji, H. and Hao, Y., 2019. Global patterns and trends in ovarian cancer incidence: age, period and birth cohort analysis. BMC Cancer, 19(1), DOI: 10.1186/s12885-019-6139-6.

Nam, S., Lee, S.Y., Kang, W.S. and Cho, H.J., 2018. Development of resveratrol-loaded herbal extract-based nanocomposites and their application to the therapy of ovarian cancer. Nanomaterials, 8(6), DOI: 10.3390/nano8060384.

Cullen, J.K., Simmons, J.L., Parsons, P.G. and Boyle, G.M., 2020. Topical treatments for skin cancer. Advanced Drug Delivery Reviews, 153, 54-64.

Arora, R. and Parkash, C., 2019. Synthesis, characterization and evaluation of anticancer activity of nanoresveratrol in B16 melanoma cell line. Journal of Drug Delivery and Therapeutics, 9(4-A), 625-631.

Arora, R. and Samim, M., 2021. Evaluation of anti-inflammatory and anti-cancer activity of calcium phosphate encapsulated Resveratrol in mouse skin cancer model. Biomedical and Pharmacology Journal, 14(1), 113-122.

Yee, Y.J., Benson, H.A., Dass, C.R. and Chen, Y., 2022. Evaluation of novel conjugated resveratrol polymeric nanoparticles in reduction of plasma degradation, hepatic metabolism and its augmentation of anticancer activity in vitro and in vivo. International Journal of Pharmaceutics, 615, DOI: 10.1016/j.ijpharm.2022.121499.

McGuigan, A., Kelly, P., Turkington, R.C., Jones, C., Coleman, H.G. and McCain, R.S., 2018. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World journal of gastroenterology, 24(43), 4846-4861.

Geng, T., Zhao, X., Ma, M., Zhu, G. and Yin, L., 2017. Resveratrol-loaded albumin nanoparticles with prolonged blood circulation and improved biocompatibility for highly effective targeted pancreatic tumor therapy. Nanoscale Research Letters, 12(1), DOI: 10.1186/s11671-017-2206-6.