The Effect of PbS Colloidal Quantum Dots with CdS and ZnS Coating on Photovoltaic Properties
Main Article Content
Abstract
In this research, we used the co-precipitation method to fabricate lead sulfide colloidal quantum dots (PbS CQDs) for photovoltaic cells. PbS CQDs were deposited uniformly on a titanium dioxide electrode by the dip-coating method. Photoelectrodes were prepared by coating layers using the successive ionic layer adsorption and reaction (SILAR) method. A solar simulation was used to investigate the photovoltaic properties of photoelectrodes under one sun illumination (100 mW/cm2) at room temperature (AM 1.5 G). The photovoltaic measurements demonstrated that TiO2/PbS CQDs with CdS and ZnS coating electrodes had a maximum power conversion efficiency (PCE) of 1.01 %. The crystallite size of PbS CQDs with different coating layers was analyzed using X-ray diffraction (XRD), and the crystallite size range was 6-7 nm. The existence of PbS CQDs and coating layers on the TiO2 electrodes was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). UV-visible spectroscopy was used to obtain the optical properties of the photoelectrodes. The optical band gap was 0.72-0.75 eV.
Keywords: co-precipitation method; dip-coating method; lead(ii) sulfide colloidal quantum dots; photovoltaic cells; successive ionic layer adsorption and reaction method
*Corresponding author: E-mail: 63605027@kmitl.ac.th
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Rosiles-Perez, C., Serrano-Estrada, M.A., Sidhik, S., Alatorre-Ordaz, A., Torres-Castro, A., Vallejo, M.A., Jiménez-González, A.E. and López-Luke, T., 2020. Synthesis of high quality PbS colloidal quantum dots by ultrasonic bath as photosensitizers in a TiO2 solar cell. Journal of Solid State Chemistry, 292, DOI: 10.1016/j.jssc.2020.121720.
Rühle, S., Shalom, M. and Zaban, A., 2010. Quantum-dot-sensitized solar cells. Chem Phys Chem, 11(11), 2290-2304, DOI: 10.1002/cphc.201000069.
Sadovnikov, S.I., Gusev, A.I. and Rempel, A.A., 2016. Nanostructured lead sulfide: synthesis, structure and properties. Russian Chemical Reviews, 85(7), 731-758, DOI: 10.1070/RCR4594.
Chistyakov, A.A., Zvaigzne, M.A., Nikitenko, V.R., Tameev, A.R., Martynov, I.L. and Prezhdo, O.V., 2017. Optoelectronic properties of semiconductor quantum dot solids for photovoltaic applications. Journal of Physical Chemistry Letters, 8(17), 4129-4139, DOI: 10.1021/acs.jpclett.7b00671.
Beygi, H., Sajjadi, S.A., Babakhani, A., Young, J.F. and van Veggel, F.C.J.M., 2018. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Applied Surface Science, 457, 1-10, DOI: 10.1016/j.apsusc.2018.06.152.
Jiao, S., Wang, J., Shen, Q., Li, Y. and Zhong, X., 2016. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. Journal of Materials Chemistry A, 4(19), 7214-7221, DOI: 10.1039/c6ta02465c.
Chang, J. and Waclawik, E.R., 2014. Colloidal semiconductor nanocrystals: Controlled synthesis and surface chemistry in organic media. RSC Advances, 4(45), 23505-23527, DOI: 10.1039/c4ra02684e.
Zhou, Y., Zhao, H., Ma, D. and Rosei, F., 2018. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chemical Society Reviews, 47(15), 5866-5890, DOI: 10.1039/c7cs00701a.
Zheng, S., Chen, J., Johansson, E.M.J. and Zhang, X., 2020. PbS Colloidal quantum dot inks for infrared solar cells. iScience, 23(11), DOI: 10.1016/j.isci.2020.101753.
Schüth, F. and Unger, K., 1999. Precipitation and coprecipitation. In: G. Ertl, H. Knözinger and J. Weitkamp, eds. Preparation of Solid Catalysts. Munich: Wiley Online Library, pp. 60-84.
Hachiya, S., Shen, Q. and Toyoda, T., 2012. Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells. Journal of Applied Physics, 111(10), DOI: 10.1063/1.4720468.
Tavakoli, M.M., 2016. Surface Engineering of Pbs colloidal quantum dots using atomic passivation for photovoltaic applications. Procedia Engineering, 139(21), 117-122, DOI: 10.1016/j.proeng.2015.08.1122.
Im, S.H., Kim, H.J., Kim, S.W., Kim, S.W. and Seok, S.I., 2011. All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells. Energy and Environmental Science, 4(10), 4181-4186, DOI: 10.1039/c1ee01774h.
Kim, H.J., Lee, H.D., Kumar, C.S.S.P., Rao, S.S., Chung, S.H. and Punnoose, D., 2015. The effect of manganese in a CdS/PbS colloidal quantum dot sensitized TiO2 solar cell to enhance its efficiency. New Journal of Chemistry, 39(6), 4805-4813, DOI: 10.1039/c5nj00400d.
Sun, L., Koh, Z.Y. and Wang, Q., 2013. PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications. Advanced Materials, 25(33), 4598-4604, DOI: 10.1002/adma.201301544.
Jostar. T.S., Devadason, S. and Suthagar, J., 2015. Influence of Mn-doping with CdS on the structural and optical properties of ZnS/CdS/TiO2 photoanodes. Journal of Materials Science: Materials in Electronics, 26(8), 5668-5676, DOI: 10.1007/s10854-015-3117-x.
Dette, C., Pérez-Osorio, M.A., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J. and Kern, K., 2014. TiO2 anatase with a bandgap in the visible region. Nano Letters, 14(11), 6533-6538, DOI: 10.1021/nl503131s.
Lindroos, S., Kanniainen, T. and Leskelä, M., 1997. Growth of zinc sulfide thin films by the successive ionic layer adsorption and reaction (SILAR) method on polyester substrates. Materials Research Bulletin, 32(12), 1631-1636, DOI: 10.1016/S0025-5408(97)00155-4.
Kyobe, J.W., Mubofu, E.B., Makame, Y.M.M., Mlowe, S. and Revaprasadu, N., 2016. Cadmium sulfide quantum dots stabilized by castor oil and ricinoleic acid. Physica E: Low-Dimensional Systems and Nanostructures, 76, 95-102, DOI: 10.1016/j.physe.2015.10.008.
Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J.C., Vanhaecke, F., Vantomme, A., Delerue, C., Allan, G. and Hens, Z., 2009. Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano, 3(10), 3023-3030, DOI: 10.1021/nn900863a.
Anitha, B., Vijith, K.P., Alexander, A., Srivastava, V. and Namboothiry, M.A.G., 2020. Understanding the poor fill factor of solution-processed squaraine based solar cells in terms of charge carrier dynamics probed via impedance and transient spectroscopy. Journal of Materials Chemistry C, 8(42), 14748-14756, DOI: 10.1039/d0tc03012k.
Yang, S.M., Huang, C.H., Zhai, J., Wang, Z.S. and Jiang, L., 2002. High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry, 12(5), 1459-1464, DOI: 10.1039/b105796k.
Sato, K., Ono, K., Izuishi, T., Kuwahara, S., Katayama, K., Toyoda, T., Hayase, S. and Shen, Q., 2016. The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells. Chemical Physics, 478, 159-163, DOI: 10.1016/j.chemphys.2016.03.014.
Yang, Z., Janmohamed, A., Lan, X., García De Arquer, F.P., Voznyy, O., Yassitepe, E., Kim, G.H., Ning, Z., Gong, X., Comin, R. and Sargent, E.H., 2015. Colloidal quantum dot photovoltaics enhanced by Perovskite shelling. Nano Letters, 15(11), 7539-7543, DOI: 10.1021/acs.nanolett.5b03271.
Andruszkiewicz, A., Zhang, X., Johansson, M.B., Yuan, L. and Johansson, E.M.J., 2021. Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability. Nanoscale, 13(12), 6234-6240, DOI: 10.1039/d0nr 08375e.
Chen, H., Pina, J.M., Hou, Y. and Sargent, E.H., 2021. Synthesis, applications, and prospects of quantum-dot-in-Perovskite solids. Advanced Energy Materials, 12(4), DOI: 10.1002/aenm. 202100774.