Evaluation to Select Tomato Genotypes with Big Fruit and Verification of Genetic Advance

Main Article Content

Fajar Prakoso Mawasid
Muhamad Syukur
Trikoesoemaningtyas
Kunto Wibisono*

Abstract

Selection progress is one of the parameters of success in a plant breeding program. Selection with a pedigree approach made in early generation is intended to increase the mean value and reduce the variance of the selected population. This study aimed to determine the selection response from F2 to F3 in different locations, and to obtain transgressive segregant genotypes. The study was conducted from August 2018 to April 2019 at the IPB Tajur II Experimental Field (300 m asl), Bogor, West Java, Indonesia. The results showed a positive response for flowering time, fruit length, harvest time, fruit diameter, fruit weight per plant, fruit weight, and numbers of fruits. There was a big difference between the estimated value and the real value of selection response and realized heritability, which was most likely due to differences in the location of the experiment. Transgressive segregant was found in each observed character, but no genotype showed transgressive segregant criteria for all characters. The most transgressive segregant criteria were found in the F3GH3-248 genotype, for five of the seven characters observed.


Keywords: index selection; selection progress; transgressive segregant


*Corresponding author: Tel.: (0254) 281055 Fax: (0254) 282507


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Dehnavard, S., Souri, M.K. and Mardanlu, S., 2017. Tomato growth responses to foliar application of ammonium sulfate in hydroponic culture. Journal of Plant Nutrition, 40(3), 315-323.

Souri, M.K. and Dehnavard, S., 2018. Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Advances in Horticultural Science, 32(1), 41-48.

Tiwari, J.K., Tiwari, A.K. and Mehta, N., 2013. Selection strategies for fruit yield in tomato (Solanum lycopersicum L.). Vegetable Science, 40(1), 23-27.

Balcha, K., Belew, D. and Nego, J., 2015. Evaluation of tomato (Lycopersicon esculentum Mill.) varieties for seed yield and yield components under jimma condition, South Western Ethiopia. Journal of Agronomy, 14(4), 292-297.

Li, Y., Niu, W., Dyck, M., Wang, J. and Zou, X., 2016. Yields and nutritional of greenhouse tomato in response to different soil aeration volume at two depths of subsurface drip irrigation. Scientific Reports, 6(1), DOI: 10.1038/srep39307.

Wibisono, K., Aisyah S.I, Suhesti, S. and Nurcholis, W., 2019. Optimization of total flavonoids extraction and a-glucosidase inhibitory activity from Plectranthus amboinicus (Lour.) Spreng. leaves using the simplex-centroid design. Molekul, 14(2), 84-91.

Anshori, M.F., Purwoko, B.S., Dewi, I.S., Ardie, S.W. and Suwarno, W.B., 2021. A new approach to select doubled haploid rice lines under salinity stress using indirect selection index. Rice Science, 28(4), 368-378.

Mustafa, M., Syukur, M., Sutjahjo, S.H. and Sobir, S., 2018. Determination of selection criteria for tomato (Solanum lycopersicum L.) yield component in the lowland based on path analysis. Agrotech Journal, 3(1), 34-41.

Farid, M., Anshori, M.F., Musa, Y., Iswoyo, H. and Sakinah, A.I., 2021. 12 Interaction of rice salinity screening in germination and seedling phase through selection index based on principal components. Chilean Journal of Agricultural Research, 81(3), 368-377.

Mahmudul, H., Basudeb, R., Nurhasan, Kawsar, A. and Omar, K., 2020. Genetic diversity analysis and construction of selection index of selected tomato genotypes. African Journal of Agricultural Research, 16(10), 1437-1441.

Hazel, L.N. and Lush, J.L., 1942. The efficiency of three methods of selection. Journal of Heredity, 33, 393-399.

Lin, C.Y., 1978. Index selection for genetic improvement of quantitative characters. Theoretical and Applied Genetics, 52, 49-56.

Young, S.S.Y. and Tallis, G.M., 1961. Performance index for lifetime production. Journal of Animal Science, 20, 506-509.

Finney, D.J., 1962. Genetic gains under three methods of selection. Genetics Research, 3, 417-423.

Merk, H.L. and Foolad, M.R., 2012. Parent-offspring correlation estimate of heritability for late blight resistance conferred by an accession of the tomato wild species Solanum pimpinellifolium: heritability of late blight resistance in a new S. pimpinellifolium accession. Plant Breeding, 131(1), 203-210.

Sherpa, P., Pandiarana, N., Shende, V.D., Seth, T. and Mukherjee, S., 2014. Research note estimation of genetic parameters and identification of selection indices in exotic tomato genotypes. Electronic Journal of Plant Breeding, 5(3), 552-562.

Ghosh, T.K., Islam, S.N., Shahanaz, S., Biswas, S.K. and Tareq, M.Z., 2018. Genetic variability and selection index evaluation of some selected tomato lines for their yield and yield components. Bangladesh Journal of Environmental Science, 34, 73-78.

Eppakayala, K., Pidigam, S., Natarajan, S., Amarapalli, G. and Komatireddy, R.R., 2021. Study of genetic variability, heritability and genetic advance for yield and yield parameters in tomato (Solanum lycopersicum L.) germplasm. Journal of Pharmacognosy and Phytochemistry, 10(1), 768-771.

Kumar, J. and Yadav, G., 2021. Appraisement of heritability in narrow sense and genetic advance in per cent of mean for different characters in tomato (Solanum lycopersicon L.). The Pharma Innovation Journal, 10(7), 1084-1087.

Florido-Bacallao, M., Lara-Rodríguez, R.M., Plana-Ramos, D. and Álvarez-Gil, M.A., 2021. Studies of gene action and heritability of the percentage of fruiting in tomato, cultivar Nagcarlang under conditions of heat stress. Cultivos Tropicales, 42(1), 1-10.

Singh, S., Singh, A.K., Singh, B., Singh, V., Shikha, K., 2021. Assessment of genetic variability, heritability, genetic advance and correlation analysis among fruit-yield components in tomato inter-varietal hybrids. The Pharma Innovation Journal, 10(2), 251-255.

Swarup, S., Cargill, E.J., Crosby, K., Flagel, L., Kniskern, J. and Glenn, K.C., 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839-852.

Mackay, I.J., Cockram, J., Howell, P. and Powell, W., 2021. Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal, 19(1), 26-34.

Reyes, B.G.D.L., 2019. Genomic and epigenomic bases of transgressive segregation – new breeding paradigm for novel plant phenotypes. Plant Science, 288, DOI: 10.1016/j.plantsci. 2019.110213.

Gonzalo, M.J., Li, Y.-C., Chen, K.-Y., Gil, D., Montoro, T., Nájera, I., Baixauli, C., Granell, A. and Monforte, A.J., 2020. Genetic control of reproductive traits in tomatoes under high temperature. Frontiers in Plant Science, 11, DOI: 10.3389/fpls.2020.00326.

Koseoglu, K., Adak, A., Sari, D., Sari, H., Oncu Ceylan, F. and Toker, C., 2017. Transgressive segregations for yield criteria in reciprocal interspecific crosses between Cicer arietinum L. and C. reticulatum. Euphytica, 213(6), DOI: 10.1007/s10681-017-1903-7.

Jambormias, E., Sutjahjo, S.H., Mattjik, A.A., Wahyu, Y. and Wirnas, D., 2014. Expansion of the phenotypic value selection index for the breeding value selection index. Buletin Agrohorti, 2(1), 115-124.

Guindon, M.F., Martin, E., Cravero, V. and Cointry, E., 2019. Transgressive segregation, heterosis and heritability for yield-related traits in a segregating population of Pisum sativum L. Experimental Agriculture, 55(4), 610-620.

Herath, H.M.S.N., Rafii, M.Y., Ismail, S.I., Jj., N. and Ramlee, S.I., 2021. Improvement of important economic traits in chilli through heterosis breeding: a review. The Journal of Horticultural Science and Biotechnology, 96(1), 14-23.

Kumar, J.P., Paramaguru, P., Arumugam, T., Boopathi, N.M. and Venkatesan, K., 2021. Correlation and path-coefficient analysis in Ramnad Mundu chilli (Capsicum annuum L.) for yield and quality traits. International Journal of Plant Sciences, 16(1), DOI: 10.15740/HAS/IJPS/16.1/1-6.

Rahevar, P.M., Patel, J.N., Axatjoshi, Sushilkumar and Gediya, L.N., 2021. Genetic diversity study in chilli (Capsicum annuum L.) using multivariate approaches. Electronic Journal of Plant Breeding, 12(2), 314-324.

Doná, A.A., Miranda, G.V., DeLima, R.O., Chaves, L.G., Gama, E.E.G., 2012. Genetic parameters and predictive genetic gain in maize with modified recurrent selection method. Chilean Journal of Agricultural Research, 72(1), 33-39.

Pandey, R.P., Kumar, N. and Mishra, S.P., 2018. Study on genetic variability, heritability and genetic advance in tomato (Solanum lycopersicum L Mill.). Journal of Pharmacognosy and Phytochemistry, 7(3), 3387-3389.

Sidhya, P., Koundinya, A.V.V. and Pandit, M.K., 2014. Genetic variability, heritability and genetic advance in tomato. Environment and Ecology, 32(4), 1737-1740.

Mawasid, F.P., Syukur, M. and Trikoesoemaningtyas, T., 2019. Epistatic gene control on the yield of tomato at medium elevation in the tropical agroecosystem. Biodiversitas Journal of Biological Diversity, 20(7), 1880-1886.

Falconer, D.S. and Mackay, T.F.C., 1996. Introduction to Quantitative Genetics. Essex: Longman.

Syukur, M., Sujiprihati, S. and Yunianti, R., 2015. Plant Breeding Techniques (revised edition). Jakarta: Penebar Swadaya.

Mattjik, A.A. and Sumertajaya, I.M., 2013. Experimental Design with SAS and Minitab Apps. Bogor: IPB Press.

González-Diéguez, D., Legarra, A., Charcosset, A., Moreau, L., Lehermeier, C., Teyssèdre, S. and Vitezica, Z.G., 2021. Genomic prediction of hybrid crops allows disentangling dominance and epistasis. Genetics, 218(1), DOI: 10.1093/genetics/iyab026.

Acquaah, G., 2012. Principles of Plant Genetics and Breeding. New Jersey: John Wiley & Sons.

Cerón-Rojas, J.J., Toledo, F. H. and Crossa, J., 2019. The relative efficiency of two multistage linear phenotypic selection indices to predict the net genetic merit. Crop Science, 59(3), 1037-1051.

Wahyu, Y., Putri, N.E., Ningtyas, T.K., Sutjahjo, S.H. and Nura, A., 2018. Short communication: correlation, path analysis, and heritability of phenotypic characters of bread wheat F2 populations. Biodiversitas Journal of Biological Diversity, 19(6), 2344-2352.

Fellahi, Z.E.A., Hannachi, A. and Bouzerzour, H., 2018. Analysis of direct and indirect selection and indices in bread wheat (Triticum aestivum L.) segregating progeny. International Journal of Agronomy, 2018, DOI: 10.1155/2018/8312857.

Ahmad, M., Iqbal, M., Khan, B.A., Khan, Z.U., Akbar, K., Ullah, I., Shahid, M. and Rehman, A., 2017. Response to selection and decline in variability, heritability and genetic advance from F2 to F3 generation of tomato (Solanum lycopercicum). International Journal of Plant Research, 7(1), 1-4.

Savitha, P. and Ushakumari, R., 2015. Genetic variability studies in F2 and F3 segregating generations for yield and its components in rice (Oryza sativa L.). Indian Journal of Science and Technology, 8(17), 1-7.

Wibisono, K., Aisyah, S.I., Nurcholis, W. and Suhesti, S., 2022. Sensitivity in callus tissue of Plectranthus amboinicus (L.) through mutation induction with colchicine. Agrivita Journal of Agricultural Science, 44(1), 82-95.

Dama, H., Aisyah, S.I., Sudarsono, Dewi A.K. and Wibisono, K., 2022. Identification, selection, and response of radiation induced towuti mutant rice (Oryza sativa L.) in drought stress conditions. Atom Indonesia, 48(2), 107-114.

Wibisono, K., Aisyah, S.I., Nurcholis, W. and Suhesti, S., 2021. Performance of putative mutants and genetic parameters of Plectranthus amboinicus (L.) through mutation induction with colchicin. Agrosainstek, 5(2), 89-99.