The Effect of Tofu Wastewater and pH on the Growth Kinetics and Biomass Composition of Euglena sp.

Main Article Content

Angga Puja Asiandu
Andhika Puspito Nugroho
Ahmad Saifun Naser
Brilian Ryan Sadewo
Mochamad Donny Koerniawan
Arief Budiman
Ulfah Juniarti Siregar
Lucia Tri Suwanti
Eko Agus Suyono*

Abstract

Media and pH are two crucial factors in microalgal cultivation. Industrial wastewater such as tofu wastewater can be utilized as alternative media for growing microalgae like Euglena sp. to produce biomass as feedstock in biorefinery activities. Here, we evaluated combinations of tofu wastewater (L) consisting of 0% (L1), 75% (L2), and 100% (L3) with pH (P) levels consisting of 5.0 (P1), 5.5 (P2), 6.0 (P3), 6.5 (P4), and 7.0 (P5). The analyses were carried out on the growth kinetics, biomass, primary metabolite compounds, and pigments of Euglena sp. Based on the study, the combinations with the highest cell density, biomass, maximum carbohydrate content, maximum lipid content, and protein content were L2P2 (23.13x105 cells/mL), L2P1 (4.53±0.17 mg/mL), L1P5 (0.93±0.02 mg/mL), L2P1 (1.27±0.11 mg/mL), and L3P4 (256±26.86 ppm), respectively. Moreover, the combinations with the highest chlorophyll-a, chlorophyll-b, and carotenoid were L2P4 (33.53±0.13 mg/L), L2P2 (17.73±0.50 mg/L), and L2P2 (11.65±0.00 mg/L), respectively. The addition of tofu wastewater combined with specific pH level enhanced the growth and biomass composition of Euglena sp. (P<0.05), with the exception of carbohydrate content. Additionally, each biochemical component of Euglena sp. had a different optimum combination of tofu wastewater and pH level. However, this wastewater can potentially be used as an alternative medium for cultivating this microalga in order to cut the production costs of biorefinery activity.


Keywords: biorefinery; growth modeling; Microalgae; mixotrophic; phycoremediation


*Corresponding author: (+62) 81328765344 Fax: (+62) 274-439517


                                              E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Suyono, E.A., Fahrunnida, S., Nopitasari and Utama, I.V., 2016. Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource. Journal of Engineering and Applied Sciences, 11(16), 9970-9973.

Mahapatra, D.M., Chanakya, H.N. and Ramachandra, T.V., 2013. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. Journal of Applied Phycology, 25(3), 855-865.

Wang, Y., Seppänen-Laakso, T., Rischer, H. and Wiebe, M.G., 2018. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One, 13(4), 1-17.

Azizullah, A., Richter, P. and Häder, D.P., 2014. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis - As sensitive endpoints for toxicity evaluation of liquid detergents. Journal of Photochemistry and Photobiology, 133, 18-26.

Dey, A., Prasad, R., Kaur, S., Singh, J. and Luwang, M.D., 2017. Tofu: Technological and nutritional potential. Indian Food Industry Magazine, 36(3), 8-24.

Asiandu, A.P., Widjajanti, H. and Rosalina, R., 2021. The potential of tofu liquid waste and rice washing wastewater as cheap growth media for Trichoderma sp. Journal of Environmental Treatment Techniques, 9(4), DOI: 10.47277/JETT/9(4)775.

Souri, M.K., 2016. Aminochelate fertilizers: The new approach to the old problem; a review. Open Agriculture, 1, 118-123.

Souri, M.K. and Hatamian, M., 2019. Aminochelates in plant nutrition: a review. Journal of Plant Nutrition, 42(1), 67-78.

Elystia, S., Larasati, D. and Muria, S.R., 2020. Produksi lipid dari mikroalga Scenedesmus sp. pada media limbah cair tahu dengan variasi konsentrasi limbah dan photoperiod. JurnalTeknik Lingkungan, 5(2), 54-61. (in Indonesian).

Widayat, W. and Hadiyanto, H., 2015. Pemanfaatan limbah cair industri tahu untuk produksi biomassa mikroalga Nannochloropsis sp. sebagai bahan baku biodiesel. Reaktor Chemical Engineering Journal, 15(4), 253-260. (in Indonesian).

Sudibyo, H., Purwanti, Y., Pradana Y.S., Samudra, T.T., Budiman, A. and Suyono, E.A., 2018. Modification of growth medium of mixed-culture species of microalgae isolated from southern Java coastal region. MATEC of Conferences, 154(1),1-6.

Danilov, R.A. and Ekelund, N.G.A., 2001. Effects of pH on the growth rate, motility and photosynthesis in Euglena gracilis. Folia Microbiologica (Praha), 46(6), 549-554.

Suzuki, K., Mitra, S., Iwata, O., Ishikawa, T., Kato, S. and Yamada, K., 2015. Selection and characterization of Euglena anabaena var. Minor as a new candidate Euglena species for industrial application. Bioscience, Biotechnology and Biochemistry, 79(10), 1730-1736.

Eze, C.N., Ogbonna, J.C., Ndu, O.O., Ochiogu, I.S. and Charles, O.N., 2017. Evaluation of some biological activities of Euglena gracilis biomass produced by a fed-batch culture with some crop fertilizers. African Journal of Biotechnology, 16(8), 337-345.

Negara, B.F.S., Irfandi, I., Nursalim, N. and Herliany, N.E., 2019. Potential of Nannochloropsis oculata and Tetraselmis chuii as a bioethanol. Jurnal Laot Ilmu Kelautan, 1(2), 71-76. (in Indonesian)

Turnip, G., Nomleni, A. and Adin, L., 2021. Laju pertumbuhan spesifik dan total lipid Chaetoceros calcitrans yang diinjeksi dengan konsentrasi CO2 yang berbeda. Jurnal Akrab Juara, 6(4), 158-166. (in Indonesian).

Phukoetphim, N., Salakkam, A., Laopaiboon, P. and Laopaiboon, L., 2017. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnology, 243, 69-75.

Hanief, S., Prasakti, L., Pradana, Y.S., Cahyono, R.B. and Budiman, A., 2020. Growth kinetic of Botryococcus braunii microalgae using Logistic and Gompertz Models. AIP Conference Proceedings, 2296(1), DOI: 10.1063/5.0030459.

Husna, F., Rachmawati, B., Samudra, T.T., Pradana, Y.S., Budiman, A. and Suyono E.A., 2020. Effectivity of various media for biomass and lipid production of mixed culture of Glagah in open pond. AIP Conference Proceedings, 2260(1), DOI: 10.1063/5.0016181.

Frumento, D., Aliakbarian, B., Casazza, A.A., Converti, A., Al Arni, S. and da Silva, M.F., 2016. Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor. Biotechnology Progress, 32(2), 279-284.

Suyono, E.A., Nopitasari, S., Zusron, M., Khoirunnisa, P., Islami, D.A. and Prabeswara, C.B., 2016. Effect of silica on carbohydrate content of mixed culture Phaeodactylum sp. and Chlorella sp. Biosciences Biotechnology Research Asia, 13(1), 109-114.

Kresnaputra, A.R., Rahmawati, S.1., Suprayatmi, M. and Hidayatullah, S., 2016. Blue biopigment phycocyanin extracts Spirulina platensis as natural color of carbonated soft drink. Jurnal Agroindustri Halal, 2, 97-108. (in Indonesian)

Al Hinai, M., Al Kalbani, A A., Al Rubkhi, B., Al Kalbani, U., and Walke, S., 2019. Protein extraction from Spirulina platensis. International Journal of Innovative Technology and Exploring Engineering, 8(12), 1524-1530.

Kuhavichanan, A., Kusolkumbot, P., Sirisattha, S. and Areeprasert, C., 2018. Mechanical extraction of protein solution from microalgae by ultrasonication. IOP Conference Series Earth and Environmental Science, 159, 1-8.

Chen, C.Y., Kuo, E.W., Nagarajan, D., Ho, S.-H., Dong, C.-D., Lee, D.-J., and Chang, J.-S. 2020. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302, DOI: 10.1016/j.biortech.2020.122814.

Fakhri, M., Antika, P.W., Ekawati, A.W. and Arifin, N.B., 2020. Growth, pigment, and protein production of Spirulina platensis under different Ca(NO3)2 concentrations. Journal of Aquaculture and Fish Healh, 9(1), 38-47.

Tan, X., Zhu, J. and Wakisaka, M., 2020. Effect of protocatechuic acid on Euglena gracilis growth and accumulation of metabolites. Sustainability, 12(21), DOI: 10.3390/su12219158.

Jalal, K.C.A., Shamsuddm, A.A., Rahman, M.F., Nurzatul, N.Z. and Rozihan, M., 2013. Growth and total carotenoid, chlorophyll a and chlorophyll b of tropical microalgae (Isochrysis sp.) in laboratory cultured conditions. Journal of Biological Sciences, 13, 10-17.

Dianursanti, Rizkytata, B.T., Gumelar, M.T. and Abdullah, T.H., 2014. Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia, 47, 56-61.

Sidabutar, H.B.R., Hasbi, M. and Bidijono, 2014. The effectiveness of tofu liquid waste for growing Chlorella sp. Jurnal Online Mahasiswa, 3, 1-8. (in Indonesian)

Zhu, J., and Wakisaka, M., 2018. Growth promotion of Euglena gracilis by ferulic acid from rice bran. AMB Express, 8(16), 1-7.

Prayitno, J., 2016. Growth pattern and biomass harvesting in microalgal photobioreactor for carbon sequestration. Jurnal Teknologi Lingkungan, 17(1), 45-57. (in Indonesian)

Salim, M., Yuniarti, Y. and Hasby, R., 2011. Pengaruh CO2 terhadap pertumbuhan Staurastrum sp. Jurnal Istek, 5(1-2), 127-138. (in Indonesian)

Asiandu, A.P. and Wahyudi, A., 2021. Phycoremediation: Heavy metals green-removal by microalgae and its application in biofuel production. Journal of Environmental Treatment Techniques, 9(3), 647-656.

Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O.N., Das, P., Gayen, K., Mandal, M.K. and Halder, G.N., 2017. Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech, 7(99), 1-21.

Wu, M., Li, L., Qin, H., Lei, A., Zhu, H., Hu, Z. and Wang, J., 2020. Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2, Mg3(PO4)2, and derivatives. Biotechnology for Biofuels and Bioproducts, 13, DOI: 10.1186/s13068-020-01734-8.

Markou, G., Angelidaki, I. and Georgakakis, D., 2012. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiology and Biotechnology, 96, 631-645.

Monfils, A.K., Triemer, R.E. and Bellairs, E.F., 2011. Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia, 50, 156-169.

Gissibl, A., Sun, A., Care, A., Nevalainen, H. and Sunna, A., 2019. Bioproducts from Euglena gracilis: Synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, DOI: 1o.3389/fbioe.2019.00108.

Tomečková, L., Tomčala, A., Oborník, M. and Hampl, V., 2020. The lipid composition of Euglena gracilis middle plastid membrane resembles that of primary plastid envelopes. Plant Physiology, 184(4), 2052-2063.

Khanra, A., Vasistha, S. and Rai, M.P., 2017. Glycerol on Lipid enhancement and FAME characterization in algae for raw material of biodiesel. International Journal of Renewable Energy Research, 7(4), 1970-1978.

O’Neill, E.C., Trick, M., Hill, L., Rejzek, M., Dusi, R.G., Hamilton, C.J., Zimba, P.V., Henrissat, B. and Field, R.A. 2015. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Molecular Biosystems, 11(10), 2808-2820.

Dwicahyanto, S., Parviana, Y. and Novtiansyah, D., 2017. Potential of microalgae as biofuel feedstock. World Chemical Engineering Journal, 1(4), 49-52.

Depraetere, O., Deschoenmaeker, F., Badri, H., Monsieurs, P., Foubert, I., Leys, N., Wattiez, R. and Muylaert, K., 2015. Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS One, 10, DOI: 10.1371/journal.pone.0132461.

Hidayat, S., 2021. Exploration of Indonesia’s Biodiesel Producing Microalgae as Sustainable Energy Source. Bogor: Indonesian Center for Biodiversity and Biotechnology.

Apriati, D., 2021. Chlorella pyrenoidosa chlorophyll levels in various concentrations of tofu liquid waste. Unbara Environmental Engineering Journal, 1(2), 1-8. (in Indonesian)

Buetow, D.E., 2011. Euglena. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, pp. 1-5.

Casper-Lindley, C. and Björkman, O., 1998. Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynthesis Research, 56(3), 277-289.

Deb, S., 2016. Morphology and biochemical study of a microalga Euglena tuba reported from the aquatic ecosystem of Cachar. Journal of Pharmacognosy and Phytochemistry, 3(3), 1-10.

Pratiwi, R., and Limantara, L., 2008. Potensi astaxantin sebagai-senyawa antikanker. Indonesian Journal of Cancer, 4, 149-154. (in Indonesian)