Bacterial Cellulose: A Multipurpose Biomaterial for Manmade World

Main Article Content

Samriddh Srivastava
Garima Mathur*

Abstract

Bacterial cellulose (BC) is a flexible biopolymer having valuable properties like high purity (without hemicellulose and lignin), high percentage of crystallinity, water retention, mechanical strength, biodegradability and unique biocompatibility. Unlike plant cellulose, bacterial cellulose is produced by many bacterial species. Recent advances in research have identified several producers of BC but the key producer is Komagataeibacter xylinus. BC produced from K. xylinus is known to possess captivating structural, physical, and chemical properties, hence making it a significant natural polymer to be used for future innovative research purposes. This review paper discusses the structural and physicochemical properties of BC; its natural production from bacteria as well as its production under optimized culture conditions. Since the demand for useful composites is high, the involvement of BC in the development of BC-based composites has also been discussed in detail in this paper. This review paper also highlights the diverse applications of BC in the biomedical, electronics, food, textile and pharmaceutical industries. The involvement of BC in the food and pharmaceutical industries can lead to further development of several BC-based super foods and next-generation wound dressings. On the basis of the compiled information in this review paper as well as that in the available literature, future studies should be focused on BC-based drug delivery mechanisms and their performance in in vivo and in vitro experiments; studies that should help to understand this biopolymer in a meticulous manner.


Keywords: bacterial cellulose; cellulose synthase; tissue engineering; biocompatible; composites


*Corresponding author: Tel.: (+91) 120-2594210


                                            E-mail: garimacity@gmail.com


 

Article Details

Section
Review Ariticle

References

Gorgieva, S. and Trček, J., 2019. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9(10), DOI: 10.3390/nano9101352.

Rol, F., Belgacem, M.N., Gandini, A. and Bras, J., 2019. Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241-264, DOI: 10.1016/j.progpolymsci.2018.09.002.

Raghavendran, V., Asare, E. and Roy, I., 2020. Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology, 7, 89-138, DOI: 10.1016/bs.ampbs.2020.07.002.

Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A. and Golalipour, M., 2011. Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 86(3), 1187-1191, DOI: 10.1016/j.carbpol.2011.06.011.

Pigossi, S.C., de Oliveira, G.J., Finoti, L.S., Nepomuceno, R., Spolidorio, L.C., Rossa, C., Ribeiro, S.J., Saska, S. and Scarel‐Caminaga, R.M., 2015. Bacterial cellulose‐hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical‐size calvarial defect model. Journal of Biomedical Materials Research Part A, 103(10), 3397-3406, DOI: 10.1002/jbm.a.35472.

Costa, A.F.S., Rocha, M.A.V. and Sarubbo, L.A., 2017. Bacterial cellulose: an ecofriendly biotextile. International Journal of Textile and Fashion Technology, 7, 11-26.

Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B., 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(suppl_1), 233-238, DOI: 10.1093/nar/gkn663.

Lustri, W.R., Barud, H.G.O.B., Barud, H.D.S., Peres, M.F., Gutierrez, J., Tercjak, A., de Oliveira, O.B. and Ribeiro, S.J.L., 2015. Microbial cellulose—biosynthesis mechanisms and medical applications. Cellulose-Fundamental Aspects and Current Trends, 1, 133-157, DOI: 10.5772/61797.

Ullah, M.W., Manan, S., Kiprono, S.J., Ul‐Islam, M. and Yang, G., 2019. Synthesis, structure, and properties of bacterial cellulose. In: J. Huang, A. Dufresne and N. Lin, eds. Nanocellulose: From Fundamentals to Advanced Materials. Weinheim: Wiley-VCH, pp. 81-113.

Mahmoud, Y.A.G., El-Naggar, M.E., Abdel-Megeed, A. and El-Newehy, M., 2021. Recent advancements in microbial polysaccharides: Synthesis and applications. Polymers, 13(23), DOI: 10.3390%2Fpolym13234136.

Colvin, J.R. and Dennis, D.T., 1964. The shape of the tips of growing bacterial cellulose microfibrils and its relation to the mechanism of cellulose biosynthesis. Canadian Journal of Microbiology, 10(5), 763-767, DOI: 10.1139/m64-097.

Ross, P., Mayer, R. and Benziman, M., 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35-58, DOI: 10.1128/mr.55.1.35-58.1991.

Saxena, I.M., Kudlicka, K., Okuda, K. and Brown, R.M., 1994. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: Implications for cellulose crystallization. Journal of bacteriology, 176(18), 5735-5752, DOI: 10.1128/jb.176.18.5735-5752.1994.

Gullo, M., La China, S., Falcone, P.M. and Giudici, P., 2018. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885-6898, DOI: 10.1007/s00253-018-9164-5.

Omadjela, O., Narahari, A., Strumillo, J., Mélida, H., Mazur, O., Bulone, V. and Zimmer, J., 2013. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proceedings of the National Academy of Sciences, 110(44), 17856-17861, DOI: 10.1073/pnas.1314063110.

Mehta, K., Pfeffer, S. and Brown, R.M., 2015. Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose, 22(1), 119-137, DOI: 10.1007/s10570-014-0521-y.

Sunagawa, N., Fujiwara, T., Yoda, T., Kawano, S., Satoh, Y., Yao, M., Tajima, K. and Dairi, T., 2013. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. Journal of bioscience and bioengineering, 115(6), 607-612, DOI: 10.1016/j.jbiosc.2012.12.021.

Du, J., Vepachedu, V., Cho, S.H., Kumar, M. and Nixon, B.T., 2016. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution. PloS One, 11(5), DOI: 10.1371%2Fjournal.pone.0155886.

Römling, U. and Galperin, M.Y., 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology, 23(9), 545-557, DOI: 1016/j.tim.2015.05.005.

Srivastava, S., Mathur, G.,2022. Komagataeibacter saccharivorans strain BC-G1: an alternative strain for production of bacterial cellulose. Biologia, DOI: 10.1007/s11756-022-01222-4.

Cheng, K.C., Catchmark, J.M. and Demirci, A., 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16(6), 1033-1045, DOI: 10.1007/s10570-009-9346-5.

Ahmad, A., Banat, F. and Taher, H., 2020. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environmental Technology and Innovation, 20, DOI: 10.1016/j.eti.2020.101138.

Ul‐Islam, M., Khan, S., Ullah, M.W. and Park, J.K., 2015. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio‐medical and electro‐conductive fields. Biotechnology Journal, 10(12), 1847-1861, DOI: 10.1002/biot.201500106.

Shi, Z., Zhang, Y., Phillips, G.O. and Yang, G., 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545, DOI: 10.1016/J.FOODHYD.2013.07.012.

Ul-Islam, M., Ullah, M.W., Khan, S. and Park, J.K., 2020. Production of bacterial cellulose from alternative cheap and waste resources: a step for cost reduction with positive environmental aspects. Korean Journal of Chemical Engineering, 37(6), 925-937, DOI: 10.1007/s11814-020-0524-3.

Zhang, Z.Y., Sun, Y., Zheng, Y.D., He, W., Yang, Y.Y., Xie, Y.J., Feng, Z.X. and Qiao, K., 2020. A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Materials Science and Engineering: C, 106, DOI: 10.1016/j.msec.2019.110249.

Chau, C.F., Yang, P., Yu, C.M. and Yen, G.C., 2008. Investigation on the lipid-and cholesterol-lowering abilities of biocellulose. Journal of Agricultural and Food Chemistry, 56(6), 2291-2295, DOI: 10.1021/jf7035802.

Zhai, X., Lin, D., Li, W. and Yang, X., 2020. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples. International Journal of Biological Macromolecules, 149, 178-186, DOI: 10.1016/j.ijbiomac.2020.01.230.

Bandyopadhyay, S., Saha, N., Brodnjak, U.V. and Sáha, P., 2019. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. Food Packaging and Shelf Life, 22, DOI: 10.1016/j.fpsl.2019.100402.

Albuquerque, R.M., Meira, H.M., Silva, I.D., Silva, C.J.G., Almeida, F.C.G., Amorim, J.D., Vinhas, G.M., Costa, A.F.S. and Sarubbo, L.A., 2021. Production of a bacterial cellulose/poly (3-hydroxybutyrate) blend activated with clove essential oil for food packaging. Polymers and Polymer Composites, 29(4), 259-270, DOI: 10.1177%2F0967391120912098.

Lin, D., Liu, Z., Shen, R., Chen, S. and Yang, X., 2020. Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007-1019, DOI: 10.1016/j.ijbiomac.2020.04.230.

Isik, Z., Unyayar, A. and Dizge, N., 2018. Filtration and antibacterial properties of bacterial cellulose membranes for textile wastewater treatment. Avicenna Journal of Environmental Health Engineering, 5(2), 106-114, DOI: 10.15171/ajehe.2018.14.

Fernandes, M., Souto, A.P., Dourado, F. and Gama, M., 2021. Application of bacterial cellulose in the textile and shoe industry: development of biocomposites. Polysaccharides, 2(3), 566-581, DOI: 10.3390/polysaccharides2030034.

Barbi, S., Taurino, C., La China, S., Anguluri, K., Gullo, M. and Montorsi, M., 2021. Mechanical and structural properties of environmental green composites based on functionalized bacterial cellulose. Cellulose, 28(3), 1431-1442, DOI: 10.1007/s10570-020-03602-y.

El-Gendi, H., Taha, T.H., Ray, J.B. and Saleh, A.K., 2022. Recent advances in bacterial cellulose: a low-cost effective production media, optimization strategies and applications. Cellulose, 29, 7495-7533, DOI: 10.1007/s10570-022-04697-1.

Khan, M.U.A., Al-Arjan, W.S., Binkadem, M.S., Mehboob, H., Haider, A., Raza, M.A., Razak, S.I.A., Hasan, A. and Amin, R., 2021. Development of biopolymeric hybrid scaffold-based on AAc/GO/nHAp/TiO2 nanocomposite for bone tissue engineering: in-vitro analysis. Nanomaterials, 11(5), DOI: 10.3390/nano11051319.

Roman, M., Haring, A.P. and Bertucio, T.J., 2019. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Current Opinion in Chemical Engineering, 24, 98-106, DOI: 10.1016/j.coche.2019.03.006.

Alavi, M., 2019. Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. e-Polymers, 19(1), 103-119, DOI: 10.1515/epoly-2019-0013.

Cavalcanti, L., Pinto, F.C.M., Oliveira, G., Lima, S.V.C., Aguiar, J.L.D.A. and LINS, E., 2017. Efficacy of bacterial cellulose membrane for the treatment of lower limbs chronic varicose ulcers: a randomized and controlled trial. Revista do Colégio Brasileiro de Cirurgiões, 44, 72-80, DOI: 10.1590/0100-69912017001011.

Lupașcu, R.E., Ghica, M.V., Dinu-Pîrvu, C.E., Popa, L., Velescu, B.Ș. and Arsene, A.L., 2022. An overview regarding microbial aspects of production and applications of bacterial cellulose. Materials, 15(2), DOI: 10.3390/ma15020676.

Grela, E., Kozłowska, J. and Grabowiecka, A., 2018. Current methodology of MTT assay in bacteria–A review. Acta Histochemica, 120(4), 303-311, DOI: 10.1016/j.acthis.2018.03.007.

Felgueiras, C., Azoia, N.G., Gonçalves, C., Gama, M. and Dourado, F., 2021. Trends on the cellulose-based textiles: Raw materials and technologies. Frontiers in Bioengineering and Biotechnology, 9, DOI: 10.3389/fbioe.2021.608826.

Fatima, A., Yasir, S., Ul-Islam, M., Kamal, T., Ahmad, M., Abbas, Y., Manan, S., Ullah, M.W. and Yang, G., 2022. Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Advanced Composites and Hybrid Materials, 5(1), 307-321, DOI: 10.1007/s42114-021-00369-z.

Stewart, S.A., Domínguez-Robles, J., Donnelly, R.F. and Larrañeta, E., 2018. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers, 10(12), DOI: 10.3390%2Fpolym10121379.

Popa, L., Ghica, M. V., Tudoroiu, E.E., Ionescu, D.G. and Dinu-Pîrvu, C.E. 2022. Bacterial Cellulose-a remarkable polymer as a source for biomaterials tailoring. Materials, 15(3), DOI: 10.3390/ma15031054.

Cellulose Solution, 2022. Dermafill, Xylinum Cellulose Membrane Dressing. [online] Available at: http://www.dermafill.com.

Lohmann and Rauscher GmbH, 2022. Suprasorb® X HydroBalance Wound Dressing. [online] Available at: http://www.lohmann-rauscher.com.

Synthes, 2022. SyntheCel Dura Onlay. [online] Available at: http://www.accessdata.fda.gov.

Grzegorczyn, S. and Ślęzak, A., 2022. Study of thin layer film evolution near bacterial cellulose membrane by Ag| AgCl electrodes in chamber with lower concentration. Plos One, 17(2), DOI: 10.1371/journal.pone.0263059.

POLYMET Jena, 2022. Polymers for Science, Medicine and Technology. [online] Available at: http://www.polymet-jena.de.

Xylos Corporation, 2022. Securian Tissue Reinforce Matrix. [online] Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K083823.

BC Genesis, 2014. BioCelltrix. [online] Available at: https://alter.com/trademarks/biocelltrix-85939235.

Bowil, 2022. CelMat® Wound. [online] Available at: https://bowil.pl/en/celmat-wound/.

Carvalho, T., Guedes, G., Sousa, F.L., Freire, C.S.R and Santos, H.A., 2019. Latest advances on bacterial cellulose‐based materials for wound healing, delivery systems, and tissue engineering. Biotechnology Journal, 14(12), DOI: 10.1002/biot.201900059.

Ye, S., Jiang, L., Su, C., Zhu, Z., Wen, Y. and Shao, W., 2019. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. International Journal of Biological Macromolecules, 133, 148-155, DOI: 10.1016/j.ijbiomac.2019.04.095.

Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W. and Radecka, I., 2021. Recent advances and applications of bacterial cellulose in biomedicine. Polymers, 13(3), DOI: 10.3390/polym13030412.

Foong, C.Y., Hamzah, M.S.A., Razak, S.I.A., Saidin, S. and Nayan, N.H.M., 2018. Influence of poly (lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials. Fibers and Polymers, 19(2), 263-271, DOI: 10.1007/s12221-018-7850-7.

Azarniya, A., Tamjid, E., Eslahi, N. and Simchi, A., 2019. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. International Journal of Biological Macromolecules, 134, 280-289, DOI: 10.1016/j.ijbiomac.2019.05.023.

Silva, W.N., Leonel, C., Prazeres, P.H., Sena, I.F., Guerra, D.A., Heller, D., Diniz, I.M., Fortuna, V., Mintz, A. and Birbrair, A., 2018. Role of Schwann cells in cutaneous wound healing. Wound Repair and Regeneration, 26(5), 392-397, DOI: 10.1111/wrr.12647.

Bayazidi, P., Almasi, H. and Asl, A.K., 2018. Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties. International Journal of Biological Macromolecules, 107, 2544-2551, DOI: 10.1016/j.ijbiomac.2017.10.137.

Cacicedo, M.L., Pacheco, G., Islan, G.A., Alvarez, V.A., Barud, H.S. and Castro, G.R., 2020. Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. International Journal of Biological Macromolecules, 147, 1136-1145, DOI: 10.1016/j.ijbiomac.2019.10.082.

Volova, T.G., Shumilova, A.A., Nikolaeva, E.D., Kirichenko, A.K. and Shishatskaya, E.I., 2019. Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB). International Journal of Biological Macromolecules, 131, 230-240, DOI: 10.1016/j.ijbiomac.2019.03.068.

Piasecka-Zelga, J., Zelga, P., Szulc, J., Wietecha, J. and Ciechańska, D., 2018. An in vivo biocompatibility study of surgical meshes made from bacterial cellulose modified with chitosan. International Journal of Biological Macromolecules, 116, 1119-1127, DOI: 10.1016/j.ijbiomac.2018.05.123.

Cheng, F., Xu, L., Dai, J., Yi, X., He, J. and Li, H., 2022. N, O-carboxymethyl chitosan/ oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. International Journal of Biological Macromolecules, 209, 2151-2164, DOI: 10.1016/j.ijbiomac.2022.04.195.

Khan, S., Ul-Islam, M., Ullah, M.W., Zhu, Y., Narayanan, K.B., Han, S.S. and Park, J.K., 2022. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. International Journal of Biological Macromolecules, 209, 9-30, DOI: 10.1016/j.ijbiomac.2022.03.191.

van Zyl, E.M. and Coburn, J.M., 2019. Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Current Opinion in Chemical Engineering, 24, 122-130, DOI: 10.1016/J.COCHE.2019.04.005.

Mandour, Y.M.H., Mohammed, S. and Menem, M.O.A., 2019. Bacterial cellulose graft versus fat graft in closure of tympanic membrane perforation. American Journal of Otolaryngology, 40(2), 168-172, DOI: 10.1016/j.amjoto.2018.12.008.

Ye, S., Jiang, L., Su, C., Zhu, Z., Wen, Y. and Shao, W., 2019. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. International Journal of Biological Macromolecules, 133, 148-155, DOI: 10.1016/j.ijbiomac.2019.04.095.