Application of the CRISPR/Cas9 Gene-editing System and Its Participation in Plant and Medical Science

Main Article Content

Prodipto Bishnu Angon*
Ummya Habiba

Abstract

The long-term goal of scientists and breeders is to study the efficacy of a gene, as well as to use it in the development of human life and in the development of improved quality and varieties of crops. CRISPR/Cas9, a gene-editing tool, has already uncovered a wide range of applications in areas such as human disease diagnosis and the development of new crop varieties. This review provides basic ideas about CRISPR/Cas9 as well as its importance in the current context. CRISPR/Cas9 editing tool has more contributions to plant science than medical science. As a mature cutting-edge biotechnological technique, CRISPR/Cas9 has been applied in a variety of crop related research and development areas including disease resistance, plant development, abiotic tolerance, morphological development, secondary metabolism, and fiber formation. Lastly, some of the limitations of this system have been mentioned, and aspects of more research in the future have been suggested. Through this review, readers will better be able to understand the CRISPR/Cas9 genome editing system and will be familiar with much of the research that has occurred from the past to the present in a range of science fields.


Keywords: CRISPR; Cas9; crop development; gene editing; genetical disorder; medical science; human diseases


*Corresponding author: Tel.: (+880) 1717697088


                                            E-mail: [email protected]

Article Details

Section
Review Ariticle

References

Gupta, D., Bhattacharjee, O., Mandal, D., Sen, M.K., Dey, D., Dasgupta, A., Kazi, T.A., Gupta, R., Sinharoy, S., Acharya, K., Chattopadhyay, D., Ravichandiran, V., Roy, S. and Ghosh, D., 2019. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sciences, 232, DOI: 10.1016/j.lfs.2019.116636.

Redman, M., King, A., Watson, C. and King, D., 2016. What is CRISPR/Cas9? Archives of Disease in Childhood-Education and Practice, 101(4), 213-215. DOI: 10.1136/archdischild-2016-310459.

Asmamaw, M. and Zawdie, B., 2021. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics: Targets and Therapy, 15, 353-361.

Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P.A., Jacks, T. and Anderson, D.G., 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6), 551-553, DOI: 10.1038/nbt.2884.

Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., Lv, J., Xie, X., Chen, Y., Li, Y., Sun, Y., Bai, Y., Songyang, Z., Ma, W., Zhou, C. and Huang, J., 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein and Cell, 6(5), 363-372, DOI: 10.1007/s13238-015-0153-5.

Xiao, Q., Guo, D. and Chen, S., 2019. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Frontiers in Cellular and Infection Microbiology, 9, DOI: 10.3389/ fcimb.2019.00069.

Hunter, M.C., Smith, R.G., Schipanski, M.E., Atwood, L.W. and Mortensen, D.A., 2017. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience, 67(4), 386-391.

El-Mounadi, K., Morales-Floriano, M.L. and Garcia-Ruiz, H., 2020. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science, 11, DOI: 10.3389/fpls.2020.00056.

Li, Y., Vonholdt, B.M., Reynolds, A., Boyko, A.R., Wayne, R.K., Wu, D.D. and Zhang, Y.P., 2013. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution, 30(8), 1867-1876, DOI: 10.1093/molbev/mst088.

Clark, R.M., Tavaré, S. and Doebley, J., 2005. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Molecular Biology and Evolution, 22(11), 2304-2312, DOI: 10.1093/molbev/msi228.

Shah, T., Andleeb, T., Lateef, S. and Noor, M.A., 2018. Genome editing in plants: advancing crop transformation and overview of tools. Plant Physiology and Biochemistry, 131, 12-21, DOI: 10.1016/j.plaphy.2018.05.009.

Malzahn, A., Lowder, L. and Qi, Y., 2017. Plant genome editing with TALEN and CRISPR. Cell and Bioscience, 7(1), DOI: 10.1186/s13578-017-0148-4.

Bao, A., Burritt, D.J., Chen, H., Zhou, X., Cao, D. and Tran, L.S.P., 2019. The CRISPR/Cas9 system and its applications in crop genome editing. Critical Reviews in Biotechnology, 39(3), 321-336, DOI: 10.1080/07388551.2018.1554621.

Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J. Tang, J., Yu, X., Liu, G. and Luo, L., 2019. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39(3), DOI: 10.1007/s11032-019-0954-y.

Kumar, V.V.S., Verma, R.K., Yadav, S.K., Yadav, P., Watts, A., Rao, M.V. and Chinnusamy, V., 2020. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26(6), 1099-1110.

Zeng, Y., Wen, J., Zhao, W., Wang, Q. and Huang, W., 2020. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Frontiers in Plant Science, 10, DOI: 10.3389/fpls.2019.01663.

Liu, L., Gallagher, J., Arevalo, E.D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M. and Jackson, D., 2021. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nature Plants, 7(3), 287-294.

Paul, B. and Montoya, G., 2020. CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43(1), 8-17.

Hsu, P.D., Lander, E.S. and Zhang, F., 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278.

Gupta, R.M. and Musunuru, K., 2014. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. The Journal of Clinical Investigation, 124(10), 4154-4161.

Kirkwood, J.M., Butterfield, L.H., Tarhini, A.A., Zarour, H., Kalinski, P. and Ferrone, S., 2012. Immunotherapy of cancer in 2012. CA: a Cancer Journal for Clinicians, 62(5), 309-335.

Rein, L.A., Yang, H. and Chao, N. J. 2018. Applications of gene editing technologies to cellular therapies. Biology of blood and Marrow Transplantation, 24(8), 1537-1545.

Li, H., Yang, Y., Hong, W., Huang, M., Wu, M. and Zhao, X. 2020. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5(1), DOI: 10.1038/s41392-019-0089-y.

Fan, Z., Perisse, I.V., Cotton, C.U., Regouski, M., Meng, Q., Domb, C., Van Wettere, A.J., Wang, Z., Harris, A., White, K.L. and Polejaeva, I.A., 2018. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 3(19), DOI: 10.1172/ jci.insight.123529.

Xu, J., Livraghi-Butrico, A., Hou, X., Rajagopalan, C., Zhang, J., Song, J., Jiang, H., Wei, H.-G., Wang, H., Bouhamdan, M. Ruan, J., Yang, D., Qiu, Y., Xie, Y., Barret, R., McClellan, S., Mou, H., Wu, Q., Chen, X., Rogers, T., Wilkinson, K.J., Gilmore, R.C., Esther, C.R., Zaman, K., Liang, X., Sobolic, M., Hazlett, L., Zhang, K., Frizzell, R.A., Gentzsch, M., O’Neal, M., Hazlett, L., Zhang, K., Frizzell, R.A., Gentzsch, M., O’Neal, W.K., Grubb, B.R., Chen, Y.E., Boucher, R.C. and Sun, F., 2021. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight, 6(1), DOI: 10.1172/jci. insight.139813.

Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., Nieuwenhuis, E.E.S., Beekman, J.M. and Clevers, H., 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6), 653-658.

Lim, K.R.Q., Yoon, C. and Yokota, T., 2018. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy. Journal of Personalized Medicine, 8(4), DOI: 10.3390/ jpm8040038.

Zhang, Y., Li, H., Min, Y.L., Sanchez-Ortiz, E., Huang, J., Mireault, A.A., Shelton, J.M., Kim, J., Mammen, P.P., Bassel-Duby, R. and Olson, E.N., 2020. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Science Advances, 6(8), DOI: 10.1126/sciadv.aay681.

Min, Y.L., Li, H., Rodriguez-Caycedo, C., Mireault, A.A., Huang, J., Shelton, J.M., McAnally, J.R., Amoasii, L., Mammen, P.P., Bassel-Duby, R. and Olson, E.N., 2019. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Science advances, 5(3), DOI: 10.1126/sciadv.aav4324.

Tabebordbar, M., Zhu, K., Cheng, J.K., Chew, W.L., Widrick, J.J., Yan, W.X., Maesner, C., Wu, E.Y., Xiao, R., Ran, F.A. and Cong, L., 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 351(6271), 407-411.

Nelson, C.E., Hakim, C.H., Ousterout, D.G., Thakore, P.I., Moreb, E.A., Rivera, R.M.C., Madhavan, S., Pan, X., Ran, F.A., Yan, W.X. and Asokan, A., 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 351(6271), 403-407.

Long, C., McAnally, J.R., Shelton, J.M., Mireault, A.A., Bassel-Duby, R. and Olson, E.N., 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science, 345(6201), 1184-1188.

Lamsfus-Calle, A., Daniel-Moreno, A., Ureña-Bailén, G., Rottenberger, J., Raju, J., Epting, T., Marciano, S., Heumos, L., Baskaran, P., S Antony, J. and Handgretinger, R., 2021. Universal gene correction approaches for β-hemoglobinopathies using CRISPR-Cas9 and adeno-associated virus serotype 6 donor templates. The CRISPR Journal, 4(2), 207-222.

The Lancet Haematology, 2019. CRISPR-Cas9 gene editing for patients with haemoglobinopathies. The Lancet Haematology, 6(9), DOI: 10.1016/S2352-3026(19)30169-3.

Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P. and Luc, S., 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 527(7577), 192-197.

Zhang, Q., Wang, S., Li, W., Yau, E., Hui, H., Singh, P.K., Achuthan, V., Karris, M.A.Y., Engelman, A.N. and Rana, T.M., 2022. Genome-wide CRISPR/Cas9 transcriptional activation screen identifies a histone acetyltransferase inhibitor complex as a regulator of HIV-1 integration. Nucleic Acids Research, 50(12), 6687-6701.

Zhang, D., Zhang, Z., Unver, T. and Zhang, B., 2021. CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221.

Hückelhoven, R., and Panstruga, R., 2011. Cell biology of the plant–powdery mildew interaction. Current Opinion in Plant Biology, 14(6), 738-746.

Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., Van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J. and Töpsch, S., 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88(5), 695-705.

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947-951.

Martínez, M.I.S., Bracuto, V., Koseoglou, E., Appiano, M., Jacobsen, E., Visser, R.G.F., Wolters, A.-M.A. and Bai, Y., 2020. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology, 20(1), DOI: 10.1186/s12870-020-02497-y.

Pramanik, D., Shelake, R.M., Park, J., Kim, M.J., Hwang, I., Park, Y. and Kim, J.Y., 2021. CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew. International Journal of Molecular Sciences, 22(4), DOI: 10.3390/ijms22041878.

Li, M.Y., Jiao, Y.T., Wang, Y.T., Zhang, N. Wang, B.B., Liu, R.Q., Yin, X., Xu, Y. and Liu, G.T., 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture Research, 7, DOI: 10.1038/s41438-020-00371-4.

Wan, D.Y., Guo, Y., Cheng, Y., Hu, Y., Xiao, S., Wang, Y. and Wen, Y.Q., 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticulture Research, 7, DOI: 10.1038/s41438-020-0339-8.

Martyn, R.D. and Netzer, D., 1991. Resistance to races 0, 1, and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. HortScience, 26(4), 429-432.

Zhang, M., Chi, D., Wang, J., Wu, F. and Huang, S., 2020. Improved performance of lead-tin mixed perovskite solar cells with PEDOT: PSS treated by hydroquinone. Solar Energy, 201, 589-595.

Hammes, U.Z., 2016. Novel roles for phytosulfokine signalling in plant–pathogen interactions. Plant, Cell and Environment, 39(7), 1393-1395.

Pyott, D.E., Sheehan, E. and Molnar, A., 2016. Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants. Molecular Plant Pathology, 17(8), 1276-1288.

Yang, B., Sugio, A. and White, F.F., 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences, 103(27), 10503-10508.

Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. and Zhao, K., 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One, 11(4), DOI: 10.1371/journal.pone.0154027.

Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L. and Zou, X., 2017. Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant biotechnology journal, 15(12), 1509-1519.

Wang, L., Chen, S., Peng, A., Xie, Z., He, Y. and Zou, X., 2019. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnology Reports, 13(5), 501-510.

Ortigosa, A., Gimenez‐Ibanez, S., Leonhardt, N., and Solano, R., 2019. Design of a bacterial speck resistant tomato by CRISPR/Cas9‐mediated editing of Sl JAZ 2. Plant Biotechnology Journal, 17(3), 665-673.

Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T. and Gal‐On, A., 2016. Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140-1153.

Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., Xiao, J., Li, F. and Wu, J., 2018. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in Plant Science, 9, DOI: 10.3389/fpls.2018.00842.

Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. and Habben, J.E., 2017. ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant biotechnology journal, 15(2), 207-216.

Klap, C., Yeshayahou, E., Bolger, A.M., Arazi, T., Gupta, S.K., Shabtai, S., Usadel, B., Salts, Y. and Barg, R., 2017. Tomato facultative parthenocarpy results from Sl AGAMOUS‐LIKE 6 loss of function. Plant Biotechnology Journal, 15(5), 634-647.

Chen, S., Zhang, N., Zhang, Q., Zhou, G., Tian, H., Hussain, S., Ahmed, S., Wang, T. and Wang, S., 2019. Genome editing to integrate seed size and abiotic stress tolerance traits in Arabidopsis reveals a role for DPA4 and SOD7 in the regulation of inflorescence architecture. International Journal of Molecular Sciences, 20(11), DOI: 10.3390/ijms2011 2695.

Bouzroud, S., Gasparini, K., Hu, G., Barbosa, M.A.M., Rosa, B.L., Fahr, M., Bendaou, N., Bouzayen, M., Zsögön, A., Smouni, A. and Zouine, M., 2020. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes, 11(3), DOI: 10.3390/ genes11030272.

Liu, L., Zhang, J., Xu, J., Li, Y., Guo, L., Wang, Z., Zhang, X., Zhao, B., Guo, Y.D. and Zhang, N., 2020. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science, 301, DOI: 10.1016/j.plantsci.2020.110683.

Cui, Y., Jiang, N., Xu, Z. and Xu, Q., 2020. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC Plant Biology, 20(1), DOI: 10.1186/s12870-020-2289-6.

Hu, W., Kaminski, R., Yang, F., Zhang, Y., Cosentino, L., Li, F., Luo, B., Alvarez-Carbonell, D., Garcia-Mesa, Y., Karn, J. and Mo, X., 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences, 111(31), 11461-11466.

Ogata, T., Ishizaki, T., Fujita, M. and Fujita, Y., 2020. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PloS One, 15(12), DOI: 10.1371/ journal.pone.0243376.

Li, R., Liu, C., Zhao, R., Wang, L., Chen, L., Yu, W., Zhang, S., Sheng, J. and Shen, L., 2019. CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biology, 19(1), DOI: 10.1186/s12870-018-1627-4.

Memi, F., Ntokou, A. and Papangeli, I., 2018. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in Perinatology, 42(8), 487-500, DOI: 10.1053/j.semperi.2018.09.003.

Globyte, V., Lee, S. H., Bae, T., Kim, J. S. and Joo, C. 2019. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. The EMBO Journal, 38(4), DOI: 10.15252/ embj.201899466.

Kimberland, M.L., Hou, W., Alfonso-Pecchio, A., Wilson, S., Rao, Y., Zhang, S. and Lu, Q., 2018. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. Journal of Biotechnology, 284, 91-101.