A Green Product Using Selective Compound for Susceptible Assessment of Copper in Blood Serum

Main Article Content

Hussain Kirem
Naser Abdulhasan Naser*

Abstract

A highly reliable approach for assessment of copper(II) in blood serum samples using an organic molecule 4-(3-hydroxyphenylazo)resorcinol, 4-HAR was developed. The paper presents the synthesis of 4-HAR, which serves as probe for definite species. 4-HAR was characterized with the FT-IR, UV-visible, 1H-NMR, 13C-NMR and mass analysis, thermal TG and DSC techniques. After examining its interactions with more than twenty-five metal ions, it was found that 4-HAR showed reaction only with copper(II), giving a distinct green color at λmax 603 nm. Experimental conditions for the reaction of 4-HAR with copper(II) were optimized. A calibration curve was created and the exhibition range of concentration obeyed Beer's Law from 0.30 to 16 μg.mL-1 with correlation coefficient of r = 0.9986, and value of the molar absorption coefficient, ε, being 3314 L.mol- 1.cm-1. The analytical method was used to determine copper(II) levels in several blood serum samples. The amounts of copper(II) found in the sera samples were compared with flame atomic absorption spectrometry technique, and the results were found to be highly reliable. Based on validation, the new approach can be utilized for assurance quality purposes with a high degree of confidence.


Keywords: blood serum; copper(II); assessment; resorcinol; solvatochromism; spectrophotometry


*Corresponding author: Tel.: (+96)7802424994


                                             E-mail: [email protected]


 

Article Details

Section
Original Research Articles

References

Smith, D.G., Mitchell, L. and New, E.J., 2019. Pattern recognition of toxic metal ions using a single-probe thiocoumarin array. Analyst, 144(1), 230-236, DOI: 10.1039/c8an01747f.

Sun, C., Shen, J., Cui, R., Yuan, F., Zhang, H. and Wu, X., 2019. Silver nanoflowers-enhanced Tb (III)/La (III) co-luminescence for the sensitive detection of dopamine. Analytical and Bioanalytical Chemistry, 411(7), 1375-1381, DOI: 10.1007/s00216-018-01568-2.

Park, M., Seo, S., Lee, S.J. and Jung, J.H., 2010. Functionalized Ni@ SiO2 core/shell magnetic nanoparticles as a chemosensor and adsorbent for Cu2+ ion in drinking water and human blood. Analyst, 135(11), 2802-2805, DOI: 10.1039/C0AN00470G.

Mathie, A., Sutton, G.L., Clarke, C.E. and Veale, E.L., 2006. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Journal of Pharmacology and Therapeutics, 111(3), 567-583, DOI: 10.1016/j.pharmthera.2005.11.004.

Zhang, W., Huang, D., Huang, M., Huang, J., Wang, D., Liu, X. and Meunier, B., 2018. Preparation of tetradentate copper chelators as potential anti‐alzheimer agents. ChemMedChem, 13(7), 684-704, DOI: 10.1002/cmdc.201800184.

Sparks, D.L. and Schreurs, B.G., 2003. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of alzheimer's disease. Proceedings of the National Academy of Sciences, 100(19), 11065-11069, DOI: 10.1073/pnas.1832769100.

Sun, W., Han, Y., Li, Z., Ge, K. and Zhang, J., 2016. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir, 32(36), 9237-9244, DOI: 10.1021/acs.langmuir.6b02228.

Stern, B.R., 2010. Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Journal of Toxicology and Environmental Health, Part A, 73(2-3), 114-127, DOI: 10.1080/15287390903337100.

Bagherian, G., Arab Chamjangali, M., Shariati Evari, H. and Ashrafi, M., 2019. Determination of copper (II) by flame atomic absorption spectrometry after its perconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique. Journal of Analytical Science and Technology, 10(1), 1-11, DOI: 10.1186/s40543-019-0164-6.

Pourreza, N. and Ghanemi, K., 2006. Determination of copper by flame atomic absorption spectrometry after solid‐phase extraction. Spectroscopy Letters, 39(2), 127-134, DOI: 10.1080/00387010500531035.‏

Chrastný, V. and Komárek, M., 2009. Copper determination using ICP-MS with hexapole collision cell. Chemical Papers, 63(5), 512-519, DOI: 10.2478/s11696-009-0057-z.

Ornatsky, O., Kinach, R., Bandura, D., Lou, X., Tanner, S., Baranov, V., Nitz, M. and Winnik, M., 2008. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 23(4), 463-469, DOI: 10.1039/b710510j.

Topcu, C., Lacin, G., Yilmaz, V., Coldur, F., Caglar, B., Cubuk, O. and Isildak, I., 2018. Electrochemical determination of copper (II) in water samples using a novel ion-selective electrode based on a graphite oxide–imprinted polymer composite. Analytical Letters, 51(12), 1890-1910, DOI: 10.1080/00032719.2017.1395035.

Koga, T., Hirakawa, C., Sakata, Y., Noma, H., Nonaka, K. and Terasaki, N., 2017. Spectroscopic and electrochemical analysis of Cu (I) complex of copper sulfate electroplating solution and evaluation of plated films. ECS Transactions, 75(35), DOI: 10.1149/ma2016-02/20/1601.

Zielenkiewicz, T., Zawadzki, J. and Radomski, A., 2012. XRF spectrometer calibration for copper determination in wood. X‐Ray Spectrometry, 41(6), 371-373, DOI: 10.1002/xrs.2416.

Chen, H., Jia, S., Zhang, J., Jang, M., Chen, X., Koh, K. and Wang, Z., 2015. Sensitive detection of copper(II) ions based on the conformational change of peptides by surface plasmon resonance spectroscopy. Analytical Methods, 7(20), 9237-9244, DOI: 10.1021/acs.langmuir.6b02228.

Bayindir, S. and Toprak, M., 2019. A novel pyrene-based selective colorimetric and ratiometric turn-on sensing for copper. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 6-11, DOI: 10.1016/j.saa.2019.01.053.

Hashem, E.Y., Seleim, M.M. and El-Zohry, A.M., 2011. Environmental method for spectrophotometric determination of copper (II). Green Chemistry Letters and Reviews, 4(3), 241-248, DOI: 10.1080/17518253.2010.546370.‏

Leelasattarathkul, T., Liawruangrath, S., Rayanakorn, M., Oungpipat, W. and Liawruangrath, B., 2006. The development of sequential injection analysis coupled with lab-on-valve for copper determination. Talanta, 70(3), 656-660, DOI: 10.1016/j.talanta.2006.03.047.

Araújo, A.N., Costa, R.C. and Alonso-Chamarro, J., 1999. Colorimetric determination of copper in aqueous samples using a flow injection system with a pre-concentration poly (ethylenimine) column. Talanta, 50(2), 337-343, DOI: 10.1016/S0039-9140(99)00033-8

Naser, N., Taha, D. and Kahdim, K., 2012. Synthesis and characterization of an organic reagent 4-(6-bromo-2-benzothiazolylazo) pyrogallol and its analytical application. Journal of Oleo Science, 61(7), 387-392, DOI: 10.5650/jos.61.387.

Pinto, J.J., Moreno, C. and García-Vargas, M., 2002. A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Analytical and Bioanalytical Chemistry, 373(8), 844-848, DOI: 10.1007/s00216-002-1403-y.

Purachat, B., Liawruangrath, S., Sooksamiti, P., Rattanaphani, S. and Buddhasukh, D., 2001. Univariate and simplex optimization for the flow-injection spectrophotometric determination of copper using nitroso-R salt as a complexing agent. Analytical Sciences, 17(3), 443-447, DOI: 10.2116/analsci.17.443.

Rumori, P. and Cerdà, V., 2003. Reversed flow injection and sandwich sequential injection methods for the spectrophotometric determination of copper (II) with cuprizone. Analytica Chimica Acta, 486(2), 227-235, DOI: 10.1016/S0003-2670(03)00493-8.

Thakur, M. And Deb, M.K., 1999. The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N, N′-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta, 49(3), 561-569, DOI: 10.1016/S0039-9140(99)00054-5.

Chaisuksant, R., Palkawong-na-ayuthaya, W. and Grudpan. K., 2000. Spectrophotometric determination of copper in alloys using naphthazarin Talanta, 53(3), 579-585, DOI: 10.1016/S0039-9140(00)00534-8.

Admasu, D., Reddy, D.N. and Mekonnen, K.N., 2016. Spectrophotometric determination of Cu (II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone. SpringerPlus, 5(1), DOI: 10.1186/s40064-016-2848-3.

Naser, A.N., Kasim, M. and Zainab, A.K., 2018. New approach for determination of sulfadiazine in pharmaceutical preparations using 4(4-sulphophenylazo)pyrogallol: Kinetic spectrophotometric method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 201, 267-280, DOI: 10.1016/j.saa.2018.05.012.

Winkler, W. and Arenhövel-Pacuła, A., 2000. The use of phenylfluorone in the presence of cetylpyridinium chloride and Triton X-100 for the spectrophotometric determination of copper (II) in blood serum. Talanta, 53(2), 277-283, DOI: 10.1016/S0039-9140(00)00406-9.

Pavia, D., Lampman, G.M., Kriz, G.S. and Vyvyan, J.R., 2013. Introduction to Spectroscopy, 5th ed. Stamford: Cengage Learning.

Ahmed, F., Dewani, R., Pervez, K., Mahboob, J. and Soomro, S., 2016. Non-destructive FT-IR analysis of mono azo dyes. Bulgarian Chemical Communications, 48, 71-77, DOI: 10.1515/rput-2017-0012.

Raymond, A., Jonathan, B., Lee, G. and Manuel, P., 2006. 1H chemical shifts in NMR: Part 23, the effect of dimethyl sulphoxide versus chloroform solvent on 1H chemical shifts. Magnetic Resonance in Chemistry, 44, 491-509, DOI: 10.1002/mrc.1747.

Kermit, K., Robert, K., Marcos, N., John, L., Liang, L. and Yasuhide, N., 2013. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85, 1515-1609, DOI: 10.1351/PAC-REC-06-04-06.

Nicolescu, T.O., 2017. Interpretation of Mass Spectra. In: M. Aliofkhazraei, ed. Mass Spectrometry. London: IntechOpen, pp. 24-78.

Liudmil, A., 2019. Tautomerism in azo and azomethyne dyes: When and if theory meets experiment. Molecules, 24, 2252-2266, DOI: 10.3390/molecules24122252.

Denevaa, V., Lyčkab, A., Hristovaa, S., Crochetc, A., Frommc, K. and Antonova, L., 2019. Tautomerism in azo dyes: Border cases of azo and hydrazo tautomers as possible NMR reference compounds. Dyes and Pigments, 165, 157-163, DOI: 10.1016/j.dyepig.2019.02.015.

Ramesh, M., Maniraj, J. And Ramesh, S., 2022. Thermal properties of the grass/cane fiber‐based hybrid composites. Natural fiber‐reinforced composites: In: S. Krishnasamy, S.M.K. Thiagamani, C. Muthukumar, R. Nagarajan and S. Siengchin, eds. Natural Fiber-Reinforces Composite: Thermal Properties and Applications. Weinheim: Wiley-VCH, pp. 135-151.

Tafu, N. and Jideani, V., 2021. Characterization of novel solid dispersions of Moringa oleifera leaf powder using thermo-analytical techniques. Processes, 9(12), DOI: 10.3390/pr9122230.

Mutar, M. and Ali, H., 2021. Preparation, characterization and analytical studies of novel azo dyes and diazo dyes. Journal of Physics: Conference Series, 2063(1), DOI: 10.1088/1742-6596/2063/1/012023.

Ammar, J.W., Khan, Z.A., Ghazi, M.N. and Naser, N.A., 2021. Synthesis of a new organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric determination of Bi (III) and Al (III) in pharmaceutical samples. Reviews in Analytical Chemistry, 40(1), 108-126, DOI: 10.1515/revac-2021-0125.

Zhou, H., Liu, Y., Lu, Y., Dong, P., Guo, B., Ding, W. and Dong, B., 2016. In-situ crack propagation monitoring in mortar embedded with cement-based piezoelectric ceramic sensors. Journal of Construction and Building Materials, 126, 361-368, DOI: 10.1016/j.conbuildmat.2016.09.050.

El-ansary, A.L. and Ali, A.A., 1984. Spectrophotometric determination of ionization constants of some 8-hydroxyquinoline azo dyes. Chimie, 30, 145-150.

Abu-Bakr, M.S., El-Shahawy, A.S. and Ahmed, S.M., 1993. Spectrophotometric study of acid-base equilibria of 4-(2-benzothiazolylazo) resorcinol and 4-(2-benzothiazolylazo) salicylic acid in water-organic solvent media. Journal of Solution Chemistry, 22(7), 663-675, DOI: 10.1007/BF00646785.

Kamlet, M.J. and Taft, R.W., 1985. Linear solvation energy relationships. Local empirical rules-or fundamental laws of chemistry? A reply to the chemometricians. Acta Chemica Scandinava B, 39, 611-628, DOI: 10.3891/acta.chem.scand.39b-0611.

Zatloukal, F., Achbergerová, E., Gergela, D., Rouchal, M., Dastychová, L., Prucková, Z. and Vícha, R.,2021. Supramolecular properties of amphiphilic adamantylated azo dyes. Dyes and Pigments, 192, DOI: 10.1016/j.dyepig.2021.109420.

Najm, M.A.A., Abd-Alrassol, K.S., Qasim, Q.A., Hussein, H.H. and AL-Salman, H.N.K., 2022. Spectrophotometric determination of folic acid using 1, 10-phenanthroline materials with ninhydrin reagent. Materials Today: Proceedings, 61(3), 865-872, DOI: 10.1016/j.matpr.2021.09.453.