Biodiversity and Functional Distribution of Macrofungi from Plant Genetic Conservation Area, Chanthaburi Province, Thailand

Main Article Content

Saowapha Surawut*
Chutapa Kunsook
Sorasak Nak-eiam
Na-monrug Khamchatra
Sasithorn Bhudharak
Walaipan Phontharod
Onanong Boonmee
Montri Yasawong
Pornpimon Kanjanavas

Abstract

The aims of this study were to investigate the biodiversity and functional distribution of macrofungi within the Plant Genetic Conservation Area  of Rambhai Barni Rajabhat University, Chanthaburi Province, Thailand, and to identify the macrofungi by sequence analysis of their internal transcribed spacer (ITS) regions. One hundred and eighty-five macrofungi samples were collected from the survey routes in 2021. The macrofungi with different morphologies were selected to perform molecular identification by sequence analysis of ITS.  A total of 41 samples of representative macrofungi were classified into 2 phyla, 5 classes, 11 orders, 21 families, and 34 genera. The macrofungi were found to be in the phylum Basidiomycota (35 taxa, 85.4%), the family Polyporaceae (10 taxa, 24.4%), and Microporus xanthopus was the most frequently found species in every month of samples collection. Their role in the ecosystem was saprotroph (40 taxa, 97.6%), symbiotroph (7 taxa, 17.0%), and pathotroph (4 taxa, 9.8%). In addition, there was no published information about the edibility of many of the macrofungi (29 taxa, 70.7%); however, some edible (8 taxa, 19.5%) and poisonous macrofungi (4 taxa, 9.8%) had previously been reported. Interestingly, some macrofungi samples need more investigation for further identification, and additional genes may be required for the study.


Keywords: macrofungi; identification; ITS; plant genetic conservation area; Thailand


*Corresponding author: Tel.: (+66) 39319111 ext. 10790, 10700


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Raja, H.A., Miller, A.N. Pearce, C.J. and. Oberlies, N.H., 2017. Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756-770, DOI: 10.1021/acs.jnatprod.6b01085.

Pinruan, U., Rungjindamai, N., Choeyklin, R., Lumyong, S., Hyde, K.D. and Jones, E.B.G., 2010. Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Diversity, 41(1), 71-88, DOI: 10.1007/s13225-010-0029-1.

Okane, I., Toyama, K., Nakagiri, A., Suzuki, K-I., Srikitikulchai, P., Sivichai, S., Hywel-Jones, N., Potacharoen, W. and Laessøe, T., 2008. Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field. Mycoscience, 49(6), 359-372.

Rungjindamai, N., Pinruan, U., Choeyklin, R., Hattori, T. and Jones, E.B.G., 2008. Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Diversity, 33, 139-161.

Yuwa-amornpitak, T. and Yeunyaw, P.N., 2020. Diversity wild mushrooms in the community forest of Na Si Nuan Sub-District, Thailand. Journal of Biochemical Technology, 11(3), 28-36.

Seephueak, P., Preecha, C. and Seephueak, W., 2018. Diversity of Macrofungi in oil palm (Elaeis guineensis Jacq.) plantation in Southern Thailand. Walailak Journal of Science and Technology, 15(3), 201-211.

Surawut, S., Nak-eiam, S., Kunsook, C., Kamhaengkul, L., Kanjanavas, P. and Yasawong, M., 2021. Diversity and the molecular identification of some ascomycetes macrofungi found in the para rubber plantation, Thailand. Journal of Biochemical Technology, 12(4), 50-56, DOI: 10.51847/Mqnb3fKVWB.

Dumrongrojwatthana, P. and Kunsook, C., 2019. Bird Species composition change in the natural resource protected area, Rambhai Barni Rajabhat University. Rambhai Barni Rajabhat Research Journal, 13(1), 5-19.

Chandrasrikul, A., Suwanarit, U., Morinaga, T., Nishizawa, Y. and Murakami, Y., 2008. Diversity of Mushroom and Macrofungi in Thailand. Bangkok: Kasetsart University Publishing.

Chandrasrikul, A., Suwanarit, P., Sangwanit, U., Lumyong, S., Payapanon, A., Sanoamuang, N., Pukahuta, C., Petcharat, V., Sardsud, U., Duengkae, K., Klinhom U., Thongkantha, S. and Tongklam, S., 2011. Checklist of Mushrooms (Basidiomycetes) in Thailand. Bangkok: Office of Natural Resources and Environmental Policy and Planning.

Desjardin, D.E., Flegel, T.W. and Boonpratuang, T., 2004. Basidiomycetes. In: E.G.B. Jones, M. Tanticharoen and K.D. Hyde, eds. Thai Fungal Diversity. Bangkok: Biotech Publishing, pp. 37-49.

Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

Felsenstein, J., 1985. Confidence limits on Phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791.

Tamura, K., Nei, M. and Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030-5.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549.

Nguyen, N.H., Song, Z., Bates, S., Branco, S., Tedersoo, L., Menke, J., Schilling, J. and Kennedy, P., 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.

Enow, E., 2013. Diversity and distribution of macrofungi (mushrooms) in the Mount Cameroon Region. Journal of Ecology and The Natural Environment, 5, 318-334, DOI: 10.5897/JENE2013.0397.

Bolhassan, M.H., Abdullah, N., Sabaratnam, V., Tsutomu, H., Abdullah, S., Rashid, N.M.N. and Musa, M.Y., 2012. Diversity and distribution of Polyporales in Peninsular Malaysia. Sains Malaysiana, 41(2), 155-161.

Zhou, L.-W., Hao, Z.-Q., Wang, Z., Wang, B. and Dai, Y.-C., 2011. Comparison of ecological patterns of polypores in three forest zones in China. Mycology, 2, 260-275, DOI: 10.1080/21501203.2011.602726.

Adeniyi, M., Titilawo, Y., Oluduro, A., Odeyemi, O., Nakin, M. and Okoh, A.I., 2018. Molecular identification of some wild Nigerian mushrooms using internal transcribed spacer: polymerase chain reaction. Amb Express, 8, DOI: 10.1186/s13568-018-0661-9.

Cho, H.J., Park, M.S., Lee, H., Oh, S.Y., Jang, Y., Fong, J.J. and Lim, Y.W., 2015. Four new species of Amanita in Inje County, Korea. Mycobiology, 43(4), 408-414, DOI: 10.5941/Myco.2015.43.4.408.

Seelan, J.S.S., Justo, A., Nagy, L.G., Grand, E.A., Redhead, S.A. and Hibbett, D., 2015. Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa. Mycologia, 107(3), 460-474.

Cui, B.K., Zhao, C. and Dai, Y.C., 2011. Melanoderma microcarpum gen. et sp. Nov. (Basidiomycota) from China. Mycotaxon, 116, 295-302.

Zhou, J.L., Zhu, L., Chen, H. and Cui, B.K., 2016. Taxonomy and Phylogeny of Polyporus Group Melanopus (Polyporales, Basidiomycota) from China. PloS One, 11(8), DOI: 10.1371/journal.pone.0159495.

Sánchez, J.E., Martin, A.M. and Sánchez, A.D., 1995. Evaluation of Cookeina sulcipes as an edible mushroom: Determination of its biomass composition. In: G. Charalambous, ed. Developments in Food Science. Amsterdam: Elsevier, pp. 1165-1172.

Moreno, R.B., Ruthes, A.C., Baggio, C.H., Vilaplana, F., Komura, D.L. and Iacomini, M., 2016. Structure and antinociceptive effects of beta-D-glucans from Cookeina tricholoma. Carbohydrate Polymers, 141, 220-228, DOI: 10.1016/j.carbpol.2016.01.001.

Chan, P.-M., Kanagasabapathy, G., Tan, Y.-S., Sabaratnam, V. and Kuppusamy, U.R., 2013. Amauroderma rugosum (Blume & T. Nees) Torrend: Nutritional composition and antioxidant and potential anti-inflammatory properties. Evidence-based Complementary and Alternative Medicine, 2013, DOI: 10.1155/2013/304713.

Mai, Y., Xu, S., Shen, R., Feng, B., He, H. and Xu, Y., 2022. Gastroprotective effects of water extract of domesticated Amauroderma rugosum against several gastric ulcer models in rats. Pharmaceutical Biology, 60(1), 600-608, DOI: 10.1080/13880209.2022.2047210.

Hsieh, H.M. and Ju, Y.M., 2018. Medicinal components in Termitomyces mushrooms. Applied Microbiology and Biotechnology, 102(12), 4987-4994, DOI: 10.1007/s00253-018-8991-8.

Phuket, S.R.N.A., Sangkaew, T., Chanapan, P. and Techaoei, S., 2019. Biological activity of beta-glucans from edible mushroom, Schizophyllum commune in Thailand. International Journal of Applied Pharmaceutics, 11(5), 110-112, DOI: 10.22159/ijap.2019.v11s5.T0083.

Thongklang, N., Keokanngeun, L., Taliam, W. and Hyde, K.D., 2020. Cultivation of a wild strain of Auricularia cornea from Thailand. Current Research in Environmental and Applied Mycology, 10(1), 120-130.

Wang, X., Lan, Y., Zhu, Y., Li, S., Liu, M., Song, X., Zhao, H., Liu, W., Zhang, J., Wang, S. and Jia, L., 2018. Hepatoprotective effects of Auricularia cornea var. Li. polysaccharides against the alcoholic liver diseases through different metabolic pathways. Scientific Reports, 8(1), DOI: 10.1038/s41598-018-25830-w.

Wang, D., Jiang, X., Teng, S., Zhang, Y., Liu, Y., Li, X. and Li, Y., 2019. The antidiabetic and antinephritic activities of Auricularia cornea (an albino mutant strain) via modulation of oxidative stress in the db/db Mice. Frontier Immunology, 10, DOI: 10.3389/fimmu.2019.01039.

Fu, Y., Wang, L., Jiang, G., Ren, L., Wang, L. and Liu, X., 2022. Anti-diabetic activity of polysaccharides from Auricularia cornea var. Li. Foods, 11(10), DOI: 10.3390/foods11101464.

EFSA Panel on Food Additives and Flavourings (FAF)., Younes, M., Aquilina, G., Engel, K-H., Fowler, P., Fernandez, M.J.F., Fürst, P., Gürtler, R., Gundert-Remy, U., Husøy, T., Manco, M., Mennes, M., Passamonti, S., Moldeus, P., Shah, R., Ine Waalkens-Berendsen, I., Wölfle, D., Wright, M., Baviera, J.M.B., Degen, G., Degen, J-C., Herman, L., Giarola, A., Smeraldi, C., Tard, A., Vianello, G. and Castle, L., 2021. Safety evaluation of long-chain glycolipids from Dacryopinax spathularia. EFSA Journal, 19(6), DOI: 10.2903/j.efsa.2021.6609.

Bitzer, J., Henkel, T., Nikiforov, A.I., Rihner, M.O., Verspeek-Rip, C.M., Usta, B. and van den Wijngaard, M., 2019. Genetic toxicity studies of glycolipids from Dacryopinax spathularia. Food and Chemical Toxicology, 123, 162-168, DOI: 10.1016/j.fct.2018.10.045.

Wu, Y.J., Wei, Z.X., Zhang, F.M., Linhardt, R.J., Sun, P.L. and Zhang, A.Q., 2019. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: A review. International Journal of Biological Macromolecules, 121, 1005-1010, DOI: 10.1016/j.ijbiomac.2018.10.117.

Ruan, Y., Li, H., Pu, L., Shen, T. and Jin, Z., 2018. Tremella fuciformis polysaccharides attenuate oxidative stress and inflammation in macrophages through miR-155. Analytical Cellular Pathology (Amsterdam), 2018, DOI: 10.1155/2018/5762371.

Wu, F., Zhou, L.-W., Yang, Z.-L., Bau, T., Li, T.-H. and Dai, Y.-C., 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98(1), 1-76, DOI: 10.1007/s13225-019-00432-7.

Aoki, W., Watanabe, M., Watanabe, M., Kobayashi, N., Terajima, J., Sugita-Konishi, Y., Kondo, K. and Hara-kudo, Y., 2020. Discrimination between edible and poisonous mushrooms among Japanese Entoloma sarcopum and related species based on phylogenetic analysis and insertion/deletion patterns of nucleotide sequences of the cytochrome oxidase 1 gene. Genes and Genetic Systems, 95(3), 133-139, DOI: 10.1266/ggs.19-00032.

Elliott, T.F., Nelsen, D.J., Karunarathna, S.C. and Stephenson, S.L., 2020. Entoloma sequestratum, a new species from northern Thailand, and a worldwide key to sequestrate taxa of Entoloma (Entolomataceae). Fungal Systemtatics and Evolution, 6, 253-263, DOI: 10.3114/fuse.2020.06.12.

Paydas, S., Kocak, R., Erturk, F., Erken, E., Zaksu, H.S. and Gurcay, A. 1990. Poisoning due to amatoxin-containing Lepiota species. British Journal of Clinical Practice, 44(11), 450-453.

Sgambelluri, R.M., Epis, S., Sassera, D., Luo, H., Angelos, E.R. and Walton, J.D., 2014. Profiling of amatoxins and phallotoxins in the genus Lepiota by liquid chromatography combined with UV absorbance and mass spectrometry. Toxins (Basel), 6(8), 2336-2347, DOI: 10.3390/toxins6082336.

Sysouphanthong, P., Hyde, K.D., Vellinga, E.C. and Chukeatirote, E., 2013. Diversity of Lepiota (Agaricales) in northern Thailand. Mycology, 4(1), 22-28, DOI: 10.1080/21501203.2013.764358.

Patocka, J., Wu, R., Nepovimova, E., Valis, M., Wu, W. and Kuca, K., 2021. Chemistry and Toxicology of Major Bioactive Substances in Inocybe Mushrooms. International Journal of Molecular Sciences, 22(4), DOI: 10.3390/ijms22042218.

Sato, Y., Tomonari, H., Kaneko, Y. and Yo, K., 2019. Mushroom poisoning with Scleroderma albidum: a case report with review of the literature. Acute Medicine and Surgery, 7(1), DOI: 10.1002/ams2.460.

Kassim, M.H.S.B., Wasti, I.G., Subari, I.A.A.M.H., Ganesan, T.A., Tang, P.L., Chong, C.C., Subramaniam, N. and Seelan, J.S.S., 2020. Macrofungi of Sungai Kangkawat Research Station, Imbak Canyon Conservation Area, Sabah, Malaysia. Malayan Nature Journal, 72(3), 371-388.