Screening and Characterization of Potential Plant Growth-Promoting Endophytes of Wheat (Triticum aestivum)

Main Article Content

Shashank Awasthi
Neeraj Wadhwa*

Abstract

Wheat is the principal and most consumed grain in the world. Biotic factors are known to affect the growth of wheat plants and grain yield worldwide. The aim of the present study was to isolate potential plant growth promoting endophytes. In this study, bacterial endophytes from germinating wheat seeds were isolated, characterized, and screened in vitro for PGP traits and then checked for their effects on germination and production of indole acetic acid (IAA), ACC deaminase activity, siderophore production, phosphate solubilization, HCN production, extracellular enzyme production and biocontrol potential. High potential PGPRs were identified by 16 s rRNA sequencing and these strains are Enterobacter asburiae, Bacillus licheniformis, Achromobacter mucicolens, and Pseudomonas fulva. Antagonistic activity results showed that B. licheniformis, and A. mucicolens could reduce the growth of the fungal phytopathogens. Alternaria alternata and Fusarium sp. also produced high levels of indole acetic acid (IAA) with a range of 27.8±0.30 µg/mL, 31.2±0.36, 21±0.20, respectively. Seed germination and development studies showed that superior increase of root and shoot length and weight were observed when compared with uninoculated control plants. The study revealed that the isolated endophytes could be used as plant growth promotion for better plant yield.


Keywords: endophytes; PGPR traits; antagonistic bacteria; Tritium aestivum; 16s rRNA


*Corresponding author: E-mail: neeraj.wadhwa@jiit.ac.in

Article Details

Section
Original Research Articles

References

Albdaiwi, R.N., Khyami-Horani, H., and Ayad, J.Y., 2019. Plant growth-promoting Rhizobacteria: an emerging method for the enhancement of wheat tolerance against salinity stress. Jordan Journal of Biological Sciences, 12(5), 525-534.

Ayaz, M., Ali,,Q., Jiang, Q., Wang, R., Wang, Z., Mu, G., Khan, S.A., Khan, A.R., Manghwar, H., Wu, H., Gao, X. and Gu, Q., 2022. Salt tolerant Bacillus strains improve plant growth traits and regulation of phytohormones in wheat under salinity stress. Plants, 11(20), DOI: 10.3390/plants11202769.

Sharma, D., Singh, R., Tiwari, R., Kumar, R., Gupta, V.K., 2019. Wheat responses and tolerance to terminal heat stress: A review. In: M. Hasanuzzaman, K. Nahar and M. Hossain, eds. Wheat Production in Changing Environments. Springer: Singapore, pp. 149-173.

Rahaie, M., Xue, G.P. and Schenk, P.M., 2013. The role of transcription factors in wheat under different abiotic stresses. In: K. Vahdati and C. Leslie, eds. Abiotic Stress-Plant Responses and Applications in Agriculture. Rijeka: InTech, pp. 367-385.

Ahlawat, O.P., Yadav, D., Kashyap, P.L., Khippal, A. and Singh, G., 2022. Wheat endophytes and their potential role in managing abiotic stress under changing climate. Journal of Applied Microbiology, 132(4), 2501-2520, DOI:10.1111/jam.15375.

The Foreign Agricultural Service, United States Department of Agriculture, 2021. Data and Analysis. [online] Available at: http://www.fas.usda.gov.

Mottaleb, K.A., Kruseman, G., Frija, A., Sonder, K. and Lopez-Ridaura, S., 2022. Projecting wheat demand in China and India for 2030 and 2050: Implications for food security. Frontiers in Nutrition, 9, DOI: 10.3389/fnut.2022.1077443.

Chai, Y., Senay, S., Horvath, D. and Pardey, P., 2022. Multi-peril pathogen risks to global wheat production: A probabilistic loss and investment assessment. Frontiers in Plant Science, 13, DOI: 10.3389/fpls.2022.1034600.

Reynolds, M.P., Braun, H.J., Pietragalla, J., Ortiz, R., 2007. Challenges to international wheat breeding. Euphytica 157(3), 281-285, DOI: 10.1007/s10681-007-9505-4.

Matar, N., Macadre, C., Ammar, G.A.G., Peres, A., Collet, B., Boustany, N.E., Rajjou, L., As-Sadi, F., Dufresne, M. and Ratet, P., 2022. Identification of beneficial Lebanese Trichoderma spp. wheat endophytes. Frontier in Plant Science, 13, DOI: 10.3389/fpls.2022.101789.

Glauben, T., Svanidze, M., Götz, L., Prehn, S., Jamali Jaghdani, T., Djuric, I., and Kuhn, L., 2022. The war in Ukraine, agricultural trade and risks to global food security. Intereconomics, 57(3), 157-163, DOI: 10.1007/s10272-022-1052-7.

The Association of the Mediterranean Chambers of Commerce and Industry, 2022. COVID-19 and the Russian Invasion of Ukraine. [online] Available at: https://www.ascame.org/wp-content/uploads/2022/04/COVID-19-and-the-Russianinvasion-of-Ukraine-2.pdf.

Kannojia, P., Sharma, P.K., Kashyap, A.K., Manzar, N., Singh, U.B., Chaudhary, K., Malviya, D., Singh, S. and Sharma, S.K., 2017. Microbe-mediated biotic stress management in plants. In: D. Singh, H. Singh and R. Prabha, eds. Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer, pp. 627-648.

Berruti, A., Lumini, E., Balestrini, R., and Bianciotto, V., 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, DOI: 10.3389/fmicb.2015.01559.

Kashyap, A.S., Manzar, N., Rajawat, M.V.S., Kesharwani, A.K., Singh, R.P., Dubey, S.C., Pattanayak, D., Dhar, S., Lal, S.K. and Singh, D., 2021. Screening and biocontrol potential of rhizobacteria native to gangetic plains and hilly regions to induce systemic resistance and promote plant growth in chilli against bacterial wilt disease. Plants (Basel), 10(10), DOI: 10.3390/plants10102125.

Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E. and Smith, D.L., 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, DOI: 10.3389/fpls.2018.01473.

Rana, K.L., Kour, D., Kaur, T., Sheikh, I., Yadav, A.N., Kumar, V., Suman, A. and Dhaliwal, H.S., 2020. Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(5), 969-979, DOI: 10.1007/s40011-020-01168-0.

Kumar, A., Maurya, B.R. and Raghuwanshi, R., 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3(4), 121-128, DOI: 10.1016/j.bcab.2014.08.003.

Katiyar, D., Hemantaranjan, A. and Singh, B., 2016. Plant growth promoting Rhizobacteria-an efficient tool for agriculture promotion. Advances in Plants and Agriculture Research, 4(6), 426-434, DOI: 10.15406/apar.2016.04.00163.

Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S.K., Sharma, V.K., Droby, S., Santoyo, G., White, J.F. and Kumar, A., 2021. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms, 9(8), DOI: 10.3390/microorganisms9081729.

Singh, D., Geat, N., Rajawat, M.V.S., Prasanna, R., Saxena, A.K. and Rajeev, K., 2017. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from wheat genotypes and their influence on plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 6(4), 1533-1540, DOI: 10.20546/ijcmas.2017.604.188.

Rana, K.L., Kour, D., Kaur, T., Devi, R., Yadav, A.N., Yadav, N., Dhaliwal, H.S. and Saxena, A.K., 2020. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek, 113(8), 1075-1107, DOI: 10.1007/s10482-020-01429-y.

Kannan, R., Damodaran, T., Pandey, B.K., Umamaheswari, S., Rai, R.B., Jha, S.K., Mishra, V.K., Sharma, D.K. and Sah, V., 2014. Isolation and characterization of endophytic plant growth-promoting bacteria (PGPB) associated to the sodicity tolerant polyembryonic mango (Mangifera indica L.) root stock and growth vigour in rice under saline sodic environment. African Journal of Microbiology Research, 8(7), 628-636, DOI: 10.5897/AJMR2013.6552.

Giri, R. and Dudeja, S.S., 2013. Host specificity of plant endophytic bacterial interactions: Root and nodule colonization under sterilized sand conditions in disposable coffee cups. Central European Journal of Experimental Biology, 2(4), 22-26.

Fouda, A.H., Hassan, S.E.D., Eid, A.M. and Ewais, E.E.D., 2015. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60(1), 95-104, DOI: 10.1016/j.aoas.2015.04.001.

Castro, R.A., Quecine, M.C., Lacava, P.T., Batista, B.D., Luvizotto, D.M., Marcon, J., Ferreira, A., Melo, I.S. and Azevedo, J.L., 2014. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springer Plus, 3(1), 1-9, DOI: 10.1186/2193-1801-3-382.

Singh, D., Sharma, A. and Saini, G.K., 2013. Biochemical and molecular characterization of the bacterial endophytes from native sugarcane varieties of Himalayan region. 3 Biotech, 3(3), 205-212, DOI: 10.1007/s13205-012-0084-2.

Bric, J.M., Bostock, R.M. and Silverstone, S.E., 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57(2), 535-538, DOI: 10.1128/aem.57.2.535-538.1991.

Ahmad, F., Ahmad, I. and Khan, M.S., 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29(1), 29-34.

Holbrook, A.A., Edge, W.J. and Bailey, F., 1961. Spectrophotometric method for determination of gibberellic acid. In: R.F. Gould, ed. Gibberellins. Advances in Chemistry Series. Washington DC: American Chemical Society, pp. 159-167.

Nautiyal, C.S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270, DOI: 10.1111/j.1574-6968.1999.tb13383.x.

Jasim, B., John Jimtha, C., Jyothis, M. and Radhakrishnan, E.K., 2013. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regulation, 71(1), DOI: 10.1007/s10725-013-9802-y.

Rahman, M.S., Quadir, Q.F., Rahman, A., Asha, M.N. and Chowdhury, M.A.K., 2014. Screening and characterization of phosphorus solubilizing bacteria and their effect on rice seedlings. Research in Agriculture Livestock and Fisheries, 1(1), 27-35, DOI: 10.3329/ralf.v1i1.22353.

Fasim, F., Ahmed, N., Parsons, R. and Gadd, G.M., 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213(1), 1-6, DOI: 10.1111/j.1574-6968.2002.tb11277.x.

Gandhi, A. and Muralidharan, G., 2016. Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. European Journal of Soil Biology, 76, 1-8, DOI: 10.1016/j.ejsobi.2016.06.006.

Ramesh, A., Sharma, S.K., Sharma, M.P., Yadav, N. and Joshi, O.P., 2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of Central India. Applied Soil Ecology, 73, 87-96, DOI: 10.1016/j.apsoil.2013.08.009.

Singh, P., Kumar, V. and Agrawal, S., 2014. Evaluation of phytase producing bacteria for their plant growth promoting activities. International Journal of Microbiology, 2014, DOI: 10.1155/2014/426483.

Fouda, A., Eid, A.M., Elsaied, A., El-Belely, E.F., Barghoth, M.G., Azab, E., Gobouri, A.A. and Hassan, S.E.D., 2021. Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants, 10(1), DOI: 10.3390/plants10010076.

Milagres, A.M., Machuca, A. and Napoleao, D., 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), DOI: 10.1016/S0167-7012(99)00028-7.

Payne, S.M., 1994. Detection, isolation, and characterization of siderophores. In: V.L. Clark and P.M. Bavoil, eds. Methods in Enzymology. Amsterdam: Academic Press Inc, pp. 329-344.

Penrose, D.M. and Glick, B.R., 2003. Methods for isolating and characterizing ACC deaminase containing plant growth‐promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15, DOI: 10.1034/j.1399-3054.2003.00086.x.

Fouda, A.H., Hassan, S.E.D., Eid, A.M. and Ewais, E.E.D., 2015. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60(1), 95-104, DOI: 10.1016/j.aoas.2015.04.001.

Verma, T. and Agarwal, S., 2016. Isolation and screening of haloalkaline protease producing bacteria from tannery solid waste. International Journal of Research in Engineering and Technology, 5(1), 237-244.

Wen, C.M., Tseng, C.S., Cheng, C.Y. and Li, Y.K., 2002. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnology and Applied Biochemistry, 35(3), 213-219, DOI: 10.1111/j.1470-8744.2002.tb01191.x.

Sangrila, S. and Maiti, T.K., 2013. Cellulase production by bacteria: A review. British Microbiology Research Journal, 3(3), 235-258.

Ariffin, H., Abdullah, N., Umi Kalsom, M.S., Shirai, Y. and Hassan, M.A., 2006. Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology, 3(1), 47-53.

Etesami, H., Mirsyed Hosseini, H. and Alikhani, H.A., 2014. In planta selection of plant growth promoting endophytic bacteria for rice (Oryza sativa L.). Journal of Soil Science and Plant Nutrition, 14(2), 491-503, DOI: 10.4067/S0718-95162014005000039.

Kaur, G., Sharma, P., Chhabra, D., Chand, K. and Mangat, G.S., 2017. Exploitation of endophytic Pseudomonas sp. for plant growth promotion and colonization in rice. Journal of Applied and Natural Science, 9(3), 1310-1316, DOI: 10.31018/jans.v9i3.1359.

Miller, R.L. and Higgins, V.J., 1970. Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology, 60(1), 104-110.

Bakker, P.A., Bakker, A.W., Marugg, J.D., Weisbeek, P.J. and Schippers, B., 1987. Bioassay for studying the role of siderophores in potato growth stimulation by Pseudomonas spp. in short potato rotations. Soil Biology and Biochemistry, 19(4), 443-449, DOI: 10.1016/0038-0717(87)90036-8.

Gupta, S. and Pandey, S., 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 10, DOI: 10.3389/fmicb.2019.01506.

Landa, B.B., Hervás, A., Bettiol, W. and Jiménez-Díaz, R.M., 1997. Antagonistic activity of Bacteria from the chickpea rhizosphere against FusariumOxysporum f. sp. ciceris. Phytoparasitica, 25(4), 305-318, DOI:10.1007/BF02981094.

Ganesan, P. and Gnanamanickam, S.S., 1987. Biological control of Sclerotium rolfsii sacc. in peanut by inoculation with Pseudomonas fluorescens. Soil Biology and Biochemistry, 19(1), 35-38, DOI:10.1016/0038-0717(87)90122-2.

Sheirdil, R.A., Hayat, R., Zhang, X.X., Abbasi, N.A., Ali, S., Ahmed, M., Khattak, J.Z.K. and Ahmad, S., 2019. Exploring potential soil bacteria for sustainable wheat (Triticum aestivum L.) production. Sustainability, 11(12), DOI: 10.3390/su11123361.

Clarridge III, J.E., 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840-862, DOI: 10.1128/CMR.17.4.840-862.2004.

Wilson, K., 2001. Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology, 56(1), 2.4.1-2.4.5.

Darby, A.C., Chandler, S.M., Welburn, S.C. and Douglas, A.E., 2005. Aphid-symbiotic bacteria cultured in insect cell lines. Applied and environmental microbiology, 71(8), 4833-4839, DOI: 10.1128/AEM.71.8.4833-4839.2005.

Gertz, E.M., 2005. BLAST Scoring Parameters. [online] Available at: http://mmb.irbbarcelona.org/gitlab/MMBData/mirrorMMB/raw/5d9f1b91e4901e541d5177529cc434d0f3c7deb3/blast-2.2.18/doc/scoring.pdf.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410, DOI: 10.1016/S0022-2836(05)80360-2.

States, D.J., Gish, W. and Altschul, S.F., 1991. Improved sensitivity of nucleic acid database searches using application-specific scoring matrices. Methods, 3(1), 66-70, DOI: 10.1016/S1046-2023(05)80165-3.

Karlin, S. and Altschul, S.F., 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences, 87(6), 2264-2268, DOI: 10.1073/pnas.87.6.2264.

Myers, E.W. and Miller, W., 1988. Optimal alignments in linear space. Bioinformatics, 4(1), 11-17, DOI: 10.1093/bioinformatics/4.1.11.

Zhang, Z., Schwartz, S., Wagner, L. and Miller, W., 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214, DOI: 10.1089/10665270050081478.

ALKahtani, M.D., Fouda, A., Attia, K.A., Al-Otaibi, F., Eid, A.M., Ewais, E.E.D., Hijri, M., St-Arnaud, M., Hassan, S.E.D., Khan, N. and Hafez, Y.M., 2020. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), DOI: 10.3390/agronomy10091325.

Herrera, S.D., Grossi, C., Zawoznik, M. and Groppa, M.D., 2016. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 186, 37-43, DOI: 10.1016/j.micres.2016.03.002.

Kandel, S.L., Firrincieli, A., Joubert, P.M., Okubara, P.A., Leston, N.D., McGeorge, K.M., Mugnozza, G.S., Harfouche, A., Kim, S.H. and Doty, S.L., 2017. An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Frontiers in Microbiology, 8, DOI: 10.3389/fmicb.2017.00386.

Shah, D., Khan, M.S., Aziz, S., Ali, H. and Pecoraro, L., 2021. Molecular and biochemical characterization, antimicrobial activity, stress tolerance, and plant growth-promoting effect of endophytic bacteria isolated from wheat varieties. Microorganisms, 10(1), DOI: 10.3390/microorganisms10010021.