Proteolytic Homeostasis in the Tissue of the Spleen and the Heart of Rats Injected with the Venom of Vipera berus berus and Vipera berus nikolskii
Main Article Content
Abstract
Species of the subfamily Viperinae, known to be Old World vipers, Vipera berus berus and Vipera berus nikolskii, are highly distributed in Europe and show their venomous effect, leading to proteolysis, thrombocytopenia, neurotoxicity, and haemorrhage state in susceptible organism. A shift in the protein balance underlies the envenoming in the targeted organs and in the whole organism. Thus, a study of the influence of the V. berus berus and V. berus nikolskii venoms on the protein systems of the spleen and the heart was conducted in order to single out the impact of toxins on the metabolic pathways in the targeted organs. The study included an investigation of the amount of total proteins, and their redistribution and connection with toxicity. The results prove the assumption of proteolytic activation and the emergence of the toxicity state, showing a decrease in the level of proteins, changes in protein composition, redistribution of enzymatic profiles, and an increased level of low molecular weight molecules.
Keywords: viper; Viperinae; venom; proteolysis; toxicity
*Corresponding author: E-mail: mashap44@gmail.com
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Cañas, C.A., Castro-Herrera, F. and Castaño-Valencia, S., 2021. Clinical syndromes associated with Viperidae family snake envenomation in southwestern Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 115(1), 51-56, DOI: 10.1093/trstmh/traa081.
Leonardi, A., Sajevic, T., Pungerčar, J. and Križaj, I., 2019. Comprehensive study of the proteome and transcriptome of the venom of the most venomous european viper: discovery of a new subclass of ancestral snake venom metalloproteinase precursor-derived proteins. Journal of Proteome Research, 18(5), 2287-2309, DOI: 10.1021/acs.jproteome.9b00120.
Tasoulis, T. and Isbister, G.K., 2017. A review and database of snake venom proteomes. Toxins, 9(9), DOI: 10.3390/toxins9090290.
Siigur, J. and Siigur, E., 2022. Biochemistry and toxicology of proteins and peptides purified from the venom of Vipera berus berus. Toxicon X, 15, DOI: 10.1016/j.toxcx.2022.100131.
Gutiérrez, J.M., Calvete, J.J., Habib, A.G., Harrison, R.A., Williams, D.J. and Warrell, D.A., 2017. Snakebite envenoming. Nature Reviews Disease Primers, 3, DOI: 10.1038/nrdp.2017.63.
Damm, M., Hempel, B.F. and Süssmuth, R.D., 2021. Old world vipers-a review about snake venom proteomics of viperinae and their variations. Toxins, 13(6), DOI: 10.3390/toxins13060427.
Bocian, A., Urbanik, M., Hus, K., Łyskowski, A., Petrilla, V., Andrejčáková, Z., Petrillová, M. and Legath, J., 2016. Proteome and peptidome of Vipera berus berus venom. Molecules, 21(10), DOI: 10.3390/molecules21101398.
Modahl, C.M., Brahma, R.K., Koh, C.Y., Shioi, N. and Kini, R.M., 2020. Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annual Review of Animal Biosciences, 8, 91-116, DOI: 10.1146/annurev-animal-021419-083626.
Kerkkamp, H.M., Kini, R.M., Pospelov, A.S., Vonk, F.J., Henkel, C.V. and Richardson, M.K., 2016. Snake genome sequencing: results and future prospects. Toxins, 8(12), DOI: 10.3390/toxins8120360.
Mouchbahani-Constance, S. and Sharif-Naeini, R., 2021. Proteomic and transcriptomic techniques to decipher the molecular evolution of venoms. Toxins, 13(2), DOI: 10.3390/toxins13020154.
Lomonte, B. and Calvete, J.J., 2017. Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23, DOI: 10.1186/s40409-017-0117-8.
Al-Shekhadat, R.I., Lopushanskaya, K.S., Segura, Á., Gutiérrez, J.M., Calvete, J. and Pla, D., 2019. Vipera berus berus venom from Russia: venomics, bioactivities and preclinical assessment of microgen antivenom. Toxins, 11(2), DOI: 10.3390/toxins11020090.
Nicola, M.R.D., Pontara, A., Kass, G.E.N., Kramer, N.I., Avella, I., Pampena, R., Mercuri, S.R., Dorne, J.L.C.M. and Paolino, G., 2021. Vipers of major clinical relevance in europe: taxonomy, venom composition, toxicology and clinical management of human bites. Toxicology, 453, DOI: 10.1016/j.tox.2021.152724.
Zinenko, O., Tovstukha, I. and Korniyenko, Y., 2020. PLA2 Inhibitor varespladib as an alternative to the antivenom treatment for bites from Nikolsky's viper Vipera berus nikolskii. Toxins, 12(6), DOI: 10.3390/toxins12060356.
Magdalan, J., Trocha, M., Merwid-Lad, A., Sozański, T. and Zawadzki, M., 2010. Vipera berus bites in the region of southwest poland-a clinical analysis of 26 cases. Wilderness and Environmental Medicine, 21(2), 114-119, DOI: 10.1016/j.wem.2010.01.005.
Latinović, Z., Leonardi, A., Šribar, J., Sajevic, T., Žužek, M.C., Frangež, R., Halassy, B., Trampuš-Bakija, A., Pungerčar, J. and Križaj, I., 2016. Venomics of Vipera berus berus to explain differences in pathology elicited by vipera ammodytes ammodytes envenomation: Therapeutic implications. Journal of Proteomics, 146, 34-47, DOI: 10.1016/j.jprot.2016.06.020.
Calderón, L., Lomonte, B., Gutiérrez, J.M., Tarkowski, A. and Hanson, L.A., 1993. Biological and biochemical activities of Vipera berus (European viper) venom. Toxicon, 31(6), 743-753, DOI: 10.1016/0041-0101(93)90380-2.
Kovalchuk, S.I., Ziganshin, R.H., Starkov, V.G., Tsetlin, V.I. and Utkin, Y.N., 2016. Quantitative proteomic analysis of venoms from russian vipers of pelias group: phospholipases A₂ are the main venom components. Toxins, 8(4), DOI: 10.3390/toxins8040105.
Bauwens, D. and Claus, K., 2019. Seasonal variation of mortality, detectability, and body condition in a population of the adder (Vipera berus). Ecology and Evolution, 9(10), 5821-5834, DOI: 10.1002/ece3.5166.
Angel-Camilo, K.L., Guerrero-Vargas, J.A., Carvalho, E.F., Lima-Silva, K., de Siqueira, R.J.B., Freitas, L.B.N., Sousa, J.A.C., Mota, M.R.L., Santos, A.A.D., Neves-Ferreira, A.G.D.C., Havt, A., Leal, L.K.A.M. and Magalhães, P.J.C., 2020. Disorders on cardiovascular parameters in rats and in human blood cells caused by Lachesis acrochorda snake venom. Toxicon, 184, 180-191, DOI: 10.1016/j.toxicon.2020.06.009.
Tibballs, J., Kuruppu, S., Hodgson, W.C., Carroll, T., Hawdon, G., Sourial, M., Baker, T. and Winkel, K., 2003. Cardiovascular, haematological and neurological effects of the venom of the Papua New Guinean small-eyed snake (Micropechis ikaheka) and their neutralisation with CSL polyvalent and black snake antivenoms. Toxicon, 42(6), 647-655, DOI: 10.1016/j.toxicon.2003.09.002.
Chaisakul, J., Isbister, G.K., Kuruppu, S., Konstantakopoulos, N. and Hodgson, W.C., 2013. An examination of cardiovascular collapse induced by eastern brown snake (Pseudonaja textilis) venom. Toxicology Letters, 221(3), 205-211, DOI: 10.1016/j.toxlet.2013.06.235.
Khader, S. and Sivagnanam, H., 2022. A rare presentation of vasculotoxic and neurotoxic ophthalmic manifestations of snakebite. Indian Journal of Ophthalmology, 2(1), 177-178, DOI: 10.4103/ijo.IJO_630_21.
Shitikov, V.K., Malenyov, A.L., Gorelov, R.A. and Bakiev, A.G., 2018. Modeli doza-effekt so smeshannymi parametrami na primere ocenki toksichnosti yada obyknovennoj gadyuki Vipera berus. Principy Ekologii, 2, 150-160. (in Russian).
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254, DOI: 10.1006/abio.1976.9999.
Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685, DOI: 10.1038/227680a0.
Ostapchenko, L., Savchuk, O. and Burlova-Vasilieva, N., 2011. Enzyme electrophoresis method in analysis of active components of haemostasis system. Advances in Bioscience and Biotechnology, 2, 20 26, DOI: 10.4236/abb.2022.139027.
Nykolaychyk, B.B., Moyn, V.M. and Kyrkovskyy, V.V., 1991. Method for determining of the peptide pool molecular. Laboratory Case, 10, 13-18.
Pidde-Queiroz, G., Magnoli, F.C., Portaro, F.C.V., Serrano, S.M.T., Lopes, A.S., Leme, A.F.P., van den Berg, C.W. and Tambourgi, D.V., 2013. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade. PLoS Neglected Tropical Diseases, 7(10), DOI: 10.1371/journal.pntd.0002519.
Tans, G. and Rosing, J., 1993. Prothrombin activation by snake venom proteases. Toxin Reviews, 12(2), 155-173, DOI: 10.3109/15569549309033110.
Resiere, D., Mehdaoui, H. and Neviere, R., 2022. Inflammation and oxidative stress in snakebite envenomation: A brief descriptive review and clinical implications. Toxins, 14(11), DOI: 10.3390/toxins14110802.
Bocian, A., Urbanik, M., Hus, K., Łyskowski, A., Petrilla, V., Andrejčáková, Z., Petrillová, M. and Legath, J., 2016. Proteome and peptidome of Vipera berus berus venom. Molecules, 21(10), DOI: 10.3390/molecules21101398.