Effect of Fiber Morphology and Elemental Composition of Ananas comosus Leaf on Cellulose Content and Permittivity

Main Article Content

Nurhafizah Abu Talip Yusof
Norazwina Zainol*
Nor Hazwani Aziz
Mohamad Shaiful Abdul Karim

Abstract

The fiber morphology and elemental composition of pineapple leaf fibers were analyzed to understand their effect on the cellulose content and permittivity value. Cellulose fiber was extracted from pineapple leaf via the alkaline treatment method, and the content was determined using the Kurschner-Hanack method. The permittivity value of the developed cellulose fiber was measured based on the waveguide technique in the G-band. The surface morphology of the developed fiber was examined with scanning electron microscopy. Meanwhile, energy dispersive X-ray (EDX) spectroscopy was used to identify the elemental composition of the pineapple leaf fibers. The findings were that the cellulose fibers with the least diameter and distance between fibers exhibited the highest permittivity value, which was 1.85. The EDX analysis demonstrated that carbon was the commonest elemental in all fibers, and was 55 wt.% of the total element composition. Furthermore, the results showed that the permittivity value increased as the carbon composition increased, and decreased as the oxygen composition increased. Hence, the morphological and elemental studies of the cellulose fiber are useful in determining the permittivity value of the cellulose fiber for material development. The high permittivity value of the pineapple leaf fibers is believed to have great potential for use in electronic components.


Keywords: pineapple leaf fiber; ellulose; permittivity; morphology; elemental composition


*Corresponding author: Tel.: (+60) 9-5492690


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Ortega, F., Versino, F. and López, O.V., 2022. Biobased composites from agro-industrial wastes and by-products. Emergent Materials, 5, 873-921, DOI: 10.1007/s42247-021-00319-x.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R. and Hoque, M.E., 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science, 2015, 1-16, DOI: 10.1155/2015/950567.

Fidelis, M.E.A., Pereira, T.V.C., Gomes, O. da F.M., Silva, F. da A. and Filho, R.D.T., 2013. The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 2(2), 149-157, DOI: 10.1016/j.jmrt.2013.02.003.

Girijappa, Y.G.T., Rangappa, S.M., Parameswaranpillai, J. and Siengchin, S., 2019. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Frontiers in Materials, 6, DOI: 10.3389/fmats.2019.00226.

Chokshi, S., Parmar, V., Gohil, P. and Chaudhary, V., 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers, 19(10), 3942-3953, DOI: 10.1080/15440478.2020.1848738.

Navin, C., 2008. Natural fibers and their composites. In: C. Navin and F. Mohammed, eds. Woodhead Publishing Series in Composites Science and Engineering: Tribology of Natural Fiber Polymer Composites. Cambridge: Woodhead Publishing, pp. 1-58.

Dungani, R., Karina, M., Subyakto, S., Aminudin, S., Hermawan, D. and Hadiyane, A., 2016. Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences, 15(1-2), 42-55, DOI: 10.3923/ajps.2016.42.55.

Abral, H., Lawrensius, V., Handayani, D. and Sugiarti, E., 2018. Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydrate Polymers, 191, 161-167.

Muhammad, R.R.A.K., Munawar, S.S., Adi, D.S., Ismadi, R.D., Bambang, S. and Ahmad, F.W.F., 2021. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 1, 2442-2458, DOI: 10.1016/j.jmrt.2021.06.014.

Das, O., Babu, K., Shanmugam, V., Sykam, K., Tebyetekerwa, M., Rasoul, E.N., Michael, F. G.S., Jaime, G.-L., Antonio, J.C., Mikael, S.H., Filippo, B. and Seeram, R., 2022. Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews, 158, DOI: 10.1016/j.rser.2021.112054.

Pattanayak, S.S, Laskar, S.M. and Sahoo, S., 2020. Microwave absorption performance enhancement of corn husk-based microwave absorber. Journal of Materials Science: Materials in Electronics, 32, 1150-1160.

Jayamani, E., Hamdan, S., Rahman, M.R. and Bakri, M.K., 2014. Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Engineering, 97(2014), 536–544, DOI: 10.1016/j.proeng.2014.12.280.

Baharudin, E., Ismail, A., Alhawari, A.R.H., Zainudin, E.S., Majid, D.L.A.A. and Seman, F.C., 2014. Investigation on the dielectric properties of pulverized oil palm frond and pineapple leaf fiber for x-band microwave absorber application. Advanced Materials Research, 893, 488-491.

Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., and Kottaisamy, M. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720-725, DOI: 10.1016/j.carbpol.2010.03.046.

Gadzama, S.W., Sunmonu, O.K., Isiaku, U.S., and Abdullahi, D. 2020. Isolation and characterization of nanocellulose from pineapple leaf fibres via chemo-mechanical method. Science World Journal, 15(2), 100-105.

Devi, L.U., Bhagawan, S.S. and Thomas, S., 1997. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. Journal of Applied Polymer Science, 64(9), 1739-1748.

Rytöluoto, I., Ritamäki, M., Gitsas, A., Pasanen, S. and Lahti, K., 2017. Morphology development, structure and dielectric properties of biaxially oriented polypropylene. Proceedings of the Nordic Insulation Symposium, 25, DOI: 10.5324/nordis.v0i25.2359.

Balani, K., Verma, V., Agarwal, A. and Narayan, R., 2014. Physical, thermal, and mechanical properties of polymers. In: K. Balani, V. Verma, A. Agarwal and R. Narayan, eds. Biosurfaces: A Materials Science and Engineering Perspective. New York: John Wiley and Sons, Inc.

Zahid, L., Malek, A.M.F., Nornikman, H., Affendi, N.A.M., Ali, A., Hussin, N., Ahmad, B. and Abd Aziz, M.Z., 2013. Development of pyramidal microwave absorber using sugar cane bagasse (SCB). Progress in Electromagnetics Research, 137, 687-702, DOI: 10.2528/PIER13012602.

Hossain, S.S. and Roy, P.K., 2018. Study of physical and dielectric properties of bio-waste-derived synthetic wollastonite. Journal of Asian Ceramic Societies, 6(3), 289-298, DOI: 10.1080/21870764.2018.1508549.

Khouaja, A., Koubaa, A., and Daly, B.H., 2021. Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Industrial Crops and Products, 171, DOI: 10.1016/j.indcrop.2021.113928.

Mah, K.H., Yussof, H.W., Jalanni, N.A., Abu Seman, M.N., and Zainol, N., 2014. Separation of xylose from glucose using thin film composite (TFC) nanofiltration membrane: Effect of pressure, total sugar concentration and xylose/glucose ratio. Jurnal Teknologi (Sciences and Engineering), 70(1), 93-98, DOI: 10.11113/jt.v70.2746.

Aziz, N.H. and Zainol, N., 2018. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery. IOP Conference Series: Materials Science and Engineering, 342(1), DOI: 10.1088/1757-899X/342/1/012028.

Jamaluddin, M.F., Zainol, N., Abdul-Rahman, R., Abdul-Ghaffar, N.F. and Salihon, J., 2014. Comparison of anaerobic lignin degradation of banana stem waste using mixed culture from Malaysian soil and pure strains from soil culture. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 16(3), 551-560.

Chun, C.W., Jamaludin, N.F.M. and Zainol, N., 2015. Optimization of biogas production from poultry manure wastewater in 250 ml flasks. Jurnal Teknologi (Sciences and Engineering), 75(1), 275-285, DOI: 10.11113/jt.v75.3981.

Samad, K.A. and Zainol, N., 2017. Effects of agitation and volume of inoculum on ferulic acid production by co-culture. Biocatalysis and Agricultural Biotechnology, 10, 9-12, DOI: 10.1016/j.bcab.2017.01.010.

Ismail, S.N. and Zainol, N., 2014. Optimization of ferulic acid extraction from banana stem waste. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 16(3), 479-484.

Moshi, A.A.M., Ravindran, D., Bharati, S.R.S., Suganthan, V. and Singh, G.K.S. 2019. Characterization of new natural cellulosic fibers – A comprehensive review. IOP Conference Series in Material Science and Engineering, 574, DOI: 10.1088/1757-899X/574/1/012013.

Karim, M.S.B.A., Konishi, Y. and Kitazawa, T. 2014. Robustness analysis of simultaneous determination method of complex permittivity and permeability. 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Pavia, Italy, May 14-16, 2014, pp. 1-4.

Karim, M.S.B.A., Konishi, Y., Harafuji, K. and Kitazawa, T., 2014. Determination of complex permittivities of layered materials using waveguide measurements. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2140-2148.

Hasan, N., Hussain, N.S.M., Razak, N.H.S.A., Shah, A.S.M. and Karim, M.S.A., 2021. Fabrication and characterization of epoxy resin–barium titanate at G-band using waveguide technique. IOP Conference Series: Materials Science and Engineering 1045(1), 1-9, DOI: 10.1088/1757-899X/1045/1/012012.

Hussain, N.S.M., Azman, A.N., Yusof, N.A.T., Mohtadzar, N.A.A. and Karim, M.S.A., 2022. Design of resonator cavity for liquid material characterization. Telkomnika, 20(2), 447-454, DOI: 10.12928/TELKOMNIKA.v20i2.23158.

Kinoshita, M., Hiroki, K., Karim, M.S.B.A., Wakino, K. and Kitazawa, T., 2012. A method of evaluating high-permittivity and lossy materials using a cylindrical cavity based on hybrid electromagnetic theory. Japanese Journal of Applied Physics, 51, DOI: 10.1143/JJAP.51.09LF03.

Akbar, S.A., Shah, A.S.M., Abdullah, A.S., Yusof, N.A.T., Khatun, S., Shaharum, S.M. and Karim, M.S.A., 2019. An accurate characterization of different water properties using resonant method for underwater communication activity. In: Z.M. Zain, H. Ahmad, D. Pebrianti, M. Mustafa, N.R.H. Abdullah, R. Samad and M.M. Noh, eds. Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018. Singapore: Springer, pp. 113-120.

Karim, M.S.B.A., Yusof, N.A.T. and Kitazawa, T., 2017. Scattering analysis of rectangular cavity with input and output waveguides and its application to material characterization. 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, November 13-16, 2017, pp. 588-591.

Kobata, T., Karim, M.S.A., Momoeda, K. and Kitazawa, T. 2013. Determination of complex permittivity of materials in rectangular waveguides using a hybrid electromagnetic method. CEM’13 Computational Electromagnetics International Workshop, Izmir, Turkey, August 2-5, 2013, pp. 56-57.

Isaac, B., Taylor, R.M. and Reifsnider, K., 2021. Mechanical and dielectric properties of aligned electrospun fibers. Fibers, 9(1), DOI: 10.3390/fib9010004.

Beese, A.M., Papkov, D., Li, S., Dzenis, Y. and Espinosa, H.D., 2013. In situ transmission electron microscope tensile testing reveals structure–property relationships in carbon nanofibers. Carbon, 60, 246-253.

Baji, A., Mai, Y.W., Wong, S.C., Abtahi, M. and Chen, P., 2010. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70, 703-718.

Li, P., Tao, Y. and Shi, S.Q., 2014. Effect of fiber content and temperature on the dielectric properties of kenaf fiber-filled rigid polyurethane foam. BioResources, 9(2), 2681-2688.

Abdel-karim, A.M., Salama, A.H. and Hassan M.L., 2018. Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse. Journal of Physical Organic Chemistry, 31(9), DOI: 10.1002/poc.3851.

Guo, X., Deng, H. and Fu, Q., 2020. An unusual decrease in dielectric constant due to the addition of nickel hydroxide into silicone rubber. Composites Part B: Engineering, 193, DOI: 10.1016/j.compositesb.2020.108006.

Lett, R.G. and Ruppel, T.C., 2004. Coal, chemical and physical properties. In: C.J. Cleveland and R.U. Avres, eds. Encyclopedia of Energy. Amsterdam: Elsevier Academic Press, pp. 411-423.

Bamzai, K.K., Koohpayeh, S.M., Kaur, B., Fort, D. and Abell, J.S., 2008. Effect of oxygen content on dielectric properties of float zone grown titanium dioxide (TiO2) crystal. Ferroelectrics, 377(1), 1-21, DOI: 10.1080/00150190802523495.

Karol, V., Prakash, C. and Sharma, A., 2021. Impact of magnesium content on various properties of Ba0.95-xSr0.05MgxTiO3 ceramic system synthesized by solid state reaction route. Materials Chemistry and Physics, 271, DOI: 10.1016/j.matchemphys.2021.124905.

Singh, N., Agarwal, A., Sanghi, S. and Singh, P., 2011. Effect of magnesium substitution on dielectric and magnetic properties of Ni–Zn ferrite. Physica B, 406(3), 687-692, DOI: 10.1016/j.physb.2010.11.087.