Desalination and Non-potable Water Remediation Using Nanotechnology Based Membranes - A Review

Main Article Content

Poornima Govindharaj
Agnishwar Girigoswami
Koyeli Girigoswami

Abstract

Potable water plays its role in many fields, including agriculture, energy production, and industries, which increases the demand for potable water in society.  In order to meet the need for clean drinking water, desalination and purification play a leading role. When desalination is mentioned, the subject of membrane technology often covers its attention, and in this review, we have discussed membrane-based desalination. Advances in nanotechnology and membrane engineering have provided a new platform for enhanced performance in membrane filtration. The hybrid membranes made from a combination of different nanostructures have yielded high precision and durable membranes which are cost- effective. The membranes that incorporate in nanotechnology cannot only remove very small particles from contaminated water, but also remove sulfate, phosphate, magnesium, and calcium- dissolved compounds with multivalent ions. The nanomembranes are more energy efficient also. The different nano-scale materials used in membrane preparation along with their performance have been discussed. The peaks and valleys of the development of nanomaterials for desalination purpose provide a clear view of the upcoming era of membrane desalination.

Article Details

Section
Review Ariticle

References

Elhance, A.P., 1999. Hydropolitics in the Third World: Conflict and Cooperation in International River Basins. Washington D.C.: US Institute of Peace Press.

Reshma, B.S., Aavula, T., Narasimman, V., Ramachandran, S., Essa, M.M. and Qoronfleh, M.W., 2022. Antioxidant and antiaging properties of agar obtained from brown seaweed Laminaria digitata (Hudson) in D-galactose-induced swiss albino mice. Evidence-Based Complementary and Alternative Medicine, 2022, https://doi.org/10.1155/2022/7736378.

Karthi, S., Vinothkumar, M., Karthic, U., Manigandan, V., Saravanan, R., Vasantha-Srinivasan, P., Kamaraj, C., Shivakumar, M.S., De Mandal, S., Velusamy, A., Krutmuang, P. and Senthil-Nathan, S., 2020. Biological effects of Avicennia marina (Forssk.) vierh. extracts on physiological, biochemical, and antimicrobial activities against three challenging mosquito vectors and microbial pathogens. Environmental Science and Pollution Research, 27(13), 15174-15187.

Karthik, R., Manigandan, V., Sheeba, R., Saravanan, R. and Rajesh, P.R., 2016. Structural characterization and comparative biomedical properties of phloroglucinol from Indian brown seaweeds. Journal of Applied Phycology, 28(6), 3561-3573.

Karthik, R., Manigandan, V. and Saravanan, R., 2017. Toxicity, teratogenicity and antibacterial activity of posterior salivary gland (PSG) toxin from the cuttlefish Sepia pharaonis (Ehrenberg, 1831). Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 1064, 28-35.

Molden, D., 2013. Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan.

Katz, D., 2021. Desalination and hydrodiplomacy: Refreshening transboundary water negotiations or adding salt to the wounds? Environmental Science and Policy, 116, 171-180.

Girigoswami, A., Ghosh, M.M., Pallavi, P., Ramesh, S. and Girigoswami, K., 2021. Nanotechnology in detection of food toxins – focus on the dairy products. Biointerface Research in Applied Chemistry, 11(6), 14155-14172.

Metkar, S.K. and Girigoswami, K.2019. Diagnostic biosensors in medicine- a review. Biocatalysis and Agriculture Biotechnology, 17, 271-283.

De, S., Gopikrishna, A., Keerthana, V., Girigoswami, A. and Girigoswami, K. 2021. An overview of nano formulated nutraceuticals and its therapeutic approaches. Current Nutrition and Food Science, 17(4), 392-407.

Ghosh, S., Girigoswami, K. and Girigoswami, A. 2019. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine, 14(15), 2067-2082.

Sharmiladevi, P., Haribabu, V., Girigoswami, K., Farook, A.S. and Girigoswami, A. 2017. Effect of mesoporous nano water reservoir on MR relaxivity. Scientific Reports, 7, https://doi.org/10.1038/s41598-017-11710-2.

Sharmiladevi, P., Girigoswami, K., Haribabu, V. and Girigoswami, A. 2021. Nano-enabled Theranostics for Cancer. Materials Advances, 2, 2876-2891, https://doi.org/10.1039/D1MA00069A.

Keerthana, V., Girigoswami, A., Harini, A. and Girigoswami, K. 2022. Waste water remediation using nanotechnology-A review. Biointerface Research in Applied Chemistry, 12(4), 4476-4495.

Mauter, M.S., Zucker, I., Perreault, F., Werber, J.R., Kim, J.-H. and Elimelech, M., 2018. The role of nanotechnology in tackling global water challenges. Nature Sustainability, 1(4), 166-175.

Ivanova, E.P., Hasan, J., Webb, H.K., Gervinskas, G., Juodkazis, S., Truong, V.K., Wu, A.H.F., Lamb, R.N., Baulin, V.A., Watson, G.S. Watson, J.A., Mainwaring, D.E. and Crawford, R.J., 2013. Bactericidal activity of black silicon. Nature Communications, 4(1), https://doi.org/10.1038/ncomms3838.

Kang, S., Pinault, M., Pfefferle, L.D. and Elimelech, M., 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23(17), 8670-8673.

Wang, Y., El-Deen, A.G., Li, P., Oh, B.H., Guo, Z., Khin, M.M., Vikhe, Y.S., Wang, J., Hu, R.G., Boom, R.M. and Kline, K.A., 2015. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano, 9(10), 10142-10157.

Cho, M., Chung, H., Choi, W. and Yoon, J., 2005. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Applied and Environmental Microbiology, 71(1), 270-275.

Liu, C., Kong, D., Hsu, P.C., Yuan, H., Lee, H.-W., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., Maraccini, P.A., Parker, K.M., Boehm, A.B. and Cui, Y., 2016. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 11(12), 1098-1104.

Fritzmann, C., Löwenberg, J., Wintgens, T. and Melin, T., 2007. State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76, https://doi.org/10.1016/j.desal.2006.12.009.

Liu, M., Lü, Z., Chen, Z., Yu, S. and Gao, C. 2011. Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse. Desalination, 281, 372-378. https://doi.org/10.1016/j.desal.2011.08.023.

Younos, T. and Tulou, K.E., 2005. Overview of desalination techniques. Journal of Contemporary Water Research and Education, 132, 3-10.

Vaithilingam, S., Gopal, S.T., Srinivasan, S.K., Manokar, A.M., Sathyamurthy, R., Esakkimuthu, G.S., Kumar, R. and Sharifpur, M., 2021. An extensive review on thermodynamic aspect based solar desalination techniques. Journal of Thermal Analysis and Calorimetry, 145, 1103-1119, https://doi.org/10.1007/s10973-020-10269-x.

Kim, D.-H., 2011. A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination, 270(1-3), 1-8, https://doi.org/10.1016/j.desal.2010.12.041.

García-Rodríguez, L. and Gómez-Camacho, C., 1999. Conditions for economical benefits of the use of solar energy in multi-stage flash distillation. Desalination, 125, 133-138.

Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D. and El-Halwagi, M.M., 2019. Technology review and data analysis for cost assessment of water treatment systems. Science of The Total Environment, 651(Pt 2), 2749-2761, https://doi.org/ 10.1016/j.scitotenv.2018.09.363.

Pendergast, M.T.M. and Hoek, E.M.V., 2011. A review of water treatment membrane nanotechnologies. Energy and Environmental Science, 4(6), 1946-1971, https://doi.org/10.1039/C0EE00541J.

Ahuchaogu, A.A., Chukwu, O.J., Obike, A.I., Igara, C.E., Nnorom, I.C. and Echeme, J.B.O., 2018. Reverse osmosis technology, its applications and nano-enabled membrane. International Journal of Advanced Research in Chemical Science, 5(2), 20-26 https://doi.org/10.20431/2349-0403.0502005.

Wimalawansa, S.J., 2013. Purification of contaminated water with reverse osmosis: effective solution of providing clean water for human needs in developing countries. International Journal of Emerging Technology and Advanced Engineering, 3(12), 75-89.

Al-Amshawee, S., Yunus, M.Y.B.M., Azoddein, A.A.M., Hassell, D.G., Dakhil, I.H. and Hasan, H.A., 2020. Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, https://doi.org/10.1016/j.cej.2019.122231.

Shahmirzadi, M.A.A., Hosseini, S.S., Luo, J. and Ortiz, I., 2018. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal. Journal of Environmental Management, 215, 324-344, https://doi.org/10.1016/j.jenvman.2018.03.040.

Ullah, I. and Rasul, M.G., 2019. Recent developments in solar thermal desalination technologies: a review. Energies, 12(1), https://doi.org/10.3390/en12010119.

Al-Amoudi, A. and Lovitt, R.W., 2007. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28, https://doi.org/10.1016/j.memsci.2007.06.002.

Leonard, E.F. and Vassilieff, C.S., 1984. The deposition of rejected matter in membrane separation processes. Chemical Engineering Communications, 30(3-5), 209-217. https://doi.org/10.1080/00986448408911128.

Le, N.L. and Nunes, S.P., 2016. Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7, 1-28. https://doi.org/10.1016/j.susmat.2016.02.001.

Scott, K., and Hughes, R.,1996. Industrial Membrane Separation Technology. Dordrecht: Springer Science + Business Media.

Bechhold, H., 1907. Kolloidstudien mit der Filtrationsmethode. Zeitschrift für Physikalische Chemie, 60U(1), 257-318, https://doi.org/10.1515/zpch-1907-6013.

Ahmad, A.L., Che Lah, N.F., Ismail, S. and Ooi, B.S., 2012. Membrane antifouling methods and alternatives: ultrasound approach. Separation and Purification Reviews, 41(4), 318-46, https://doi.org/10.1080/15422119.2011.617804.

Mustapha, R., Ali, A., Subramaniam, G., Zuki, A.A.A., Awang, M., Harun M.H.C., and Hamzah, S., 2021. Removal of malachite green dye using oil palm empty fruit bunch as a low-cost adsorbent. Biointerface Research in Appllied Chemistry, 11(6), 14998-15008, https://doi.org/10.33263/BRIAC116.1499815008.

Bhattacharyya, D., 2007. Functionalized membranes and environmental applications. Clean Technologies and Environmental Policy, 9(2), 81-83, https://doi.org/10.1007/S10098-007-0096-5.

Lu, K.-J., Zuo, J. and Chung, T.-S., 2017. Novel PVDF membranes comprising n-butylamine functionalized graphene oxide for direct contact membrane distillation. Journal of Membrane Science, 539, 34-42, https://doi.org/10.1016/j.memsci.2017.05.064.

Krishnan, J.N., Venkatachalam, K.R., Ghosh, O., Jhaveri, K., Palakodeti, A. and Nair, N., 2022. Review of thin film nanocomposite membranes and their applications in desalination. Frontiers in Chemistry, 10, https://doi.org/10.3389/fchem.2022.781372.

Lee. K.P., Arnot, T.C. and Mattia, D., 2011. A review of reverse osmosis membrane materials for desalination-Development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22, https://doi.org/10.1016/j.memsci.2010.12.036.

Cadotte, J.E., 1975. Reverse Osmosis Membrane. US Patent. Patent Application No. 3926798.

Kurihara, M., Kanamaru, N., Harumiya, N., Yoshimura, K. and Hagiwara, S., 1980. Spiral-wound new thin film composite membrane for a single-stage seawater desalination by reverse osmosis. Desalination, 32, 13-23.

Schiffer, D.K., Davis, R.B. and Coplan, M.J., 1979. Development of Composite Hollow Fiber Reverse Osmosis Systems. NTIS Report No. PB80-2130444.

Cadotte, J.E., 1977. Reverse Osmosis Membrane. US Patent. Patent Application No. 4039440.

Riley, R.L., Fox, R.L., Lyons, C.R., Milstead, C.E., Seroy, M.W. and Tagami, M., 1976. Spiral-wound poly (ether/amide) thin-film composite membrane systems. Desalination, 19(1-3), 113-126.

Naaktgeboren, A.J., Snijders, G.J. and Gons, J., 1988. Characterization of a new reverse osmosis composite membrane for industrial application. Desalination, 68(2-3), 223-242.

Kawaguchi, T., Minematsu, H., Hayashi, Y., Hara, S. and Ueda, F., 1982. Amphoteric Ion-Permeable Composite Membrane. US Patent. Patent Application No. 4360434.

Eriksson, P., 1988. Water and salt transport through two types of polyamide composite membranes. Journal of Membrane Science, 36, 297-313.

Cadotte, J.E., 1981. Interfacially Synthesized Reverse Osmosis Membrane. US Patent. Patent Application No. 4277344.

Uemura, T., Himeshima, Y. and Kurihara, M., 1988. Interfacially Synthesized Reverse Osmosis Membrane. US Patent. Patent Application No. 4761234.

Sundet, S.A., 1985. Production of Composite Membranes. US Patent. Patent Application No. 4529646.

Arthur, S.D., 1991. Multilayer Reverse Osmosis Membrane of Polyamide-Urea. US Patent. Patent Application No. 5019264.

Abdelrasoul, A., Doan H. and Lohi, A., 2017. Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology. London: Intech Open.

Li, N.N., Fane, A.G., Ho, W.W. and Matsuura, T., 2011. Advanced Membrane Technology and Applications. Hoboken: John Wiley and Sons.

Roy, K., Mukherjee, A., Maddela, N.R., Chakraborty, S., Shen, B., Li, M., Du, D., Peng, Y., Lu, F. and Cruzatty, L.C.G., 2020. Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment-a review. Journal of Environmental Chemical Engineering, 8(1), https://doi.org/10.1016/j.jece.2019.103572.

Aziz, A.A., Wong, K.C., Goh, P.S., Ismail, A.F. and Azelee, I.W., 2020. Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination. Journal of Water Process Engineering, 33, https://doi.org/10.1016/j.jwpe.2019.101005.

Liu, Y., Xie, D., Song, M., Jiang, L., Fu, G., Liu, L. and Li, J., 2018. Water desalination across multilayer graphitic carbon nitride membrane: Insights from non-equilibrium molecular dynamics simulations. Carbon, 140, 131-138.

Liu, Y., Cheng, Z., Song, M., Jiang, L., Fu, G., Liu, L. and Li, J., 2021. Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination. Journal of Membrane Science, 620, https://doi.org/10.1016/j.memsci.2020.118869.

Gu, Z., Lin, G. and Xie, G., 2022. Carbon nitride (C3N) nanoslits guided membrane for efficient seawater desalination. Applied Surface Science, 582, https://doi.org/10.1016/j’apsusc.2022.152460.

Wang, Y., Lian, T., Tarakina, N.V., Yuan, J. and Antonietti, M., 2022. Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nature Communications, 13(1), https://doi.org/10.1038/s41467-022-35120-9.

Radjabian, M. and Abetz, V., 2020. Advanced porous polymer membranes from self-assembling block copolymers. Progress in Polymer Science, 102, https://doi.org/10.1016/j.progpolymsci.2020.101219.

Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K. and Karnik, R., 2013. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nature Communications, 4, https://doi.org/10.1038/ncomms3220.

Dongre, R.S., Sadasivuni, K.K., Deshmukh, K., Mehta, A., Basu, S., Meshram, J.S., Al-Maadeed, M.A. and Karim, A., 2019. Natural polymer based composite membranes for water purification: A review. Polymer-Plastics Technology and Materials, 58(12), 1295-1310, https://doi.org/10.1080/25740881.2018.1563116.

Jeyasubramanian, K., Muthuselvi, M., Hikku, G.S. and Muthusankar, E., 2019. Improving electrochemical performance of reduced graphene oxide by counteracting its aggregation through intercalation of nanoparticles. Journal of Colloid and Interface Science, 549, 22-32.

Muthuselvi, M., Jeyasubramanian, K., Hikku, G.S., Muthuselvan, M., Eswaran, M., Senthil Kumar, N. and Ponnusamy, V.K., 2021. Rare earth metal oxide‐doped reduced graphene‐oxide nanocomposite as binder‐free hybrid electrode material for supercapacitor application. International Journal of Energy Research, 45(6), 8255-8266.

Thebo, K.H., Qian, X., Zhang, Q., Chen, L., Cheng H.M. and Ren, W., 2018. Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 9, https://doi.org/10.1038/s41467-018-03919-0.

Yolong, Y., Yang, Y., Ying, W. and Peng, X. 2016. Two-dimensional materials for novel liquid separation membranes. Nanotechnology, 27(33), https://doi.org/10.1088/0957-4484/27/33/332001.

Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M., 2015. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 10(5), 459-464, https://doi.org/10.1038/nnano.2015.37.

Lee, K.P., Arnot, T.C. and Mattia, D., 2011. A review of reverse osmosis membrane materials for desalination-development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22, https://doi.org/10.1016/j.memsci.2010.12.036.

Farhat, T.R. and Schlenoff, J.B., 2001. Ion transport and equilibria in polyelectrolyte multilayers. Langmuir, 17(4), 1184-1192.

Ghosh, S. and Das, A.P., 2015. Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicological and Environmental Chemistry, 97(5), 491-514, https://doi.org/10.1080/02772248.2015.1052204.

Rodríguez-Calvo, A., Silva-Castro, G.A., Osorio, F., González-López, J. and Calvo, C., 2014. Novel membrane materials for reverse osmosis desalination. Hydrology: Current Research, 5(2), https://doi.org/10.4172/2157-7587.1000167.

Sarkar, S. and Chakraborty, S., 2021. Nanocomposite polymeric membrane a new trend of water and wastewater treatment: A short review. Groundwater for Sustainable Development, 12, https://doi.org/10.1016/j.gsd.2020.100533.

Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. and Meier, W., 2007. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences, 104(52), 20719-20724.

Shah, P., Lalan, M. and Jani, D., 2021. Toxicological aspects of carbon nanotubes, fullerenes and graphenes. Current Pharmaceutical Design, 27(4), 556-564.

Rana, S.V.S., 2021. Recent advances on renal toxicity of engineered nanoparticles—A review. Journal of Toxicology and Risk Assessment, 7(1), https://doi.org/10.23937/2572-4061.1510036.

Samadi, S., Lajayer, B.A., Moghiseh, E. and Rodríguez-Couto, S., 2021. Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environmental Technology and Innovation, 21, https://doi.org/10.1016/j.eti.2020.101323.

Girigoswami, K., 2018. Toxicity of metal oxide nanoparticles. In: Q. Saquib, M. Faisal, A.A. Al-Khedhairy and A.A. Alatar, eds. Cellular and Molecular Toxicology of Nanoparticles. Cham: Springer, pp. 99-122.

Lu, G.Q. and Zhao, X.S., 2004. Nanoporous materials–an overview. in: Series on Chemical Engineering-Volume 4, Nanoporous Materials: Science and Engineering. New Jersey: World Scientific Publishers. pp. 1-13.

Adesina, A.A., 2004. Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catalysis Surveys from Asia, 8(4), 265-273.

Syron, E. and Casey, E., 2008. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science and Technology, 42(6), 1833-1844.

US Bureau of Reclamation, 2003. Desalination and Water Purification Technology Roadmap. Sandia National Laboratories and the U.S. Department of Interior, Bureau of Reclamation.