A Review of Laser-Induced Breakdown Spectroscopy (LIBS) for Document Examination: Fundamentals, Mechanism, and Application

Main Article Content

Adlina Syafura Ahmad Sabri
Hamizah Md Rasid
Reena Abd Rashid
Umi Kalsum Abdul Karim
Mohamed Sazif Mohamed Subri
Mohamed Izzharif Abdul Halim

Abstract

Document examination is one of the main types of investigations in forensic science, particularly in cases involving questioned documents. These documents include assorted forms of written or printed texts on different substrates (paper, banknotes, etc.) with uncertain authenticity. Ink analysis plays a vital role in document examination. It is often focused on understanding the chemical composition of the ink, which can be colorants, solvents, vehicles, and additives. Document examiners utilize several analytical tools including laser-induced breakdown spectroscopy (LIBS). The use of this instrument has gained prominence for its ability to detect multiple elements, offer straightforward sample preparation, minimize sample destruction, and provide fast and accurate readings. This paper reviews previous research that employed LIBS for document examination, highlighting its modern applications and approaches in analysing various types of documents. Furthermore, this paper discusses the strengths and weaknesses of this instrument as a viable technique in the field of document examination.

Article Details

Section
Review Ariticle

References

Chen, Y., Liu, Y., Han, B., Yu, W. and Wan, E., 2022. Identification of writing marks from pencil lead through machine learning based on laser-induced breakdown spectroscopy. Optik, 259, https://doi.org/10.1016/j.ijleo.2022.169008.

Kula, A., Wietecha-Posłuszny, R., Pasionek, K., Król, M., Woźniakiewicz, M. and Kościelniak, P., 2014. Application of laser induced breakdown spectroscopy to examination of writing inks for forensic purposes. Science and Justice, 54(2), 118-125, https://doi.org/10.1016/j.scijus.2013.09.008.

Cicconi, F., Lazic, V., Palucci, A., Assis, A.C.A. and Romolo, F.S., 2020. Forensic analysis of commercial inks by laser-induced breakdown spectroscopy (LIBS). Sensors, 20(13), https://doi.org/10.3390/s20133744.

Balah, O.F.A. and Nassef, O.A.T., 2019. A further analysis of laser-induced breakdown spectroscopy ink pens’ spectra using principal component analysis (PCA) for forensic characterization. Arab Journal of Nuclear Sciences and Applications, 52(2), 72-78, https://doi.org/10.21608/ajnsa.2019.4231.1097.

Reed, G., Savage, K., Edwards, D. and Daeid, N.N., 2014. Hyperspectral imaging of gel pen inks: An emerging tool in document analysis. Science and Justice, 54(1), 71-80, https://doi.org/10.1016/j.scijus.2013.09.005.

Hark, R.R. and East, L.J., 2014. Forensic applications of LIBS. In: S. Musazzi and U. Perini, eds. Springer Series in Optical Sciences. Berlin: Springer, pp. 377-420.

Hoehse, M., Paul, A., Gornushkin, I. and Panne, U., 2012. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Analytical and Bioanalytical Chemistry, 402(4), 1443-1450, https://doi.org/10.1007/s00216-011-5287-6.

Shaffer, D.K., 2009. Forensic document analysis using scanning microscopy. Proceedings of the SPIE, 7378, https://doi.org/10.1117/12.825186.

Calcerrada, M. and García-Ruiz, C., 2015. Analysis of questioned documents: A review. Analytica Chimica Acta, 853(1), 143-166, https://doi.org/10.1016/j.aca.2014.10.057.

Poon, N.L., Ho, S.S.H. and Li, C.K., 2005. Differentiation of coloured inks of inkjet printer cartridges by thin layer chromatography and high performance liquid chromatography. Science and Justice, 45(4), 187-194, https://doi.org/10.1016/S1355-0306(05)71665-8.

Trejos, T., Flores, A. and Almirall, J.R., 2010. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 65(11), 884-895, https://doi.org/10.1016/j.sab.2010.08.004.

Szafarska, M., Wietecha-Posłuszny, R., Woźniakiewicz, M. and Kościelniak, P., 2011. Examination of colour inkjet printing inks by capillary electrophoresis. Talanta, 84(5), 1234-1243, https://doi.org/10.1016/j.talanta.2010.12.024.

Król, M., Kula, A., Wietecha-Posłuszny, R., Woźniakiewicz, M. and Kościelniak, P., 2012. Examination of black inkjet printing inks by capillary electrophoresis. Talanta, 96, 236-242, https://doi.org/10.1016/j.talanta.2011.12.025.

Lee, J., Nam, Y.S., Min, J., Lee, K.B. and Lee, Y., 2016. TOF-SIMS analysis of red color inks of writing and printing tools on questioned documents. Journal of Forensic Sciences, 61(3), 815-822, https://doi.org/10.1111/1556-4029.13047.

Materazzi, S., Risoluti, R., Pinci, S. and Romolo, F.S., 2017. New insights in forensic chemistry: NIR/Chemometrics analysis of toners for questioned documents examination. Talanta, 174, 673-678, https://doi.org/10.1016/j.talanta.2017.06.044.

Trejos, T., Torrione, P., Corzo, R., Raeva, A., Subedi, K., Williamson, R., Yoo, J. and Almirall, J., 2016. A novel forensic tool for the characterization and comparison of printing ink evidence: Development and evaluation of a searchable database using data fusion of spectrochemical methods. Journal of Forensic Sciences, 61(3), 715-724, https://doi.org/10.1111/1556-4029.13109.

Sharaa, S.I., Elmagd, A.A.S.A., Bakr, A.-S.A., Moustafa, Y.M., Shabana, A.A. and El-Aziz, I.A., 2019. The physical application of non-destructive techniques in detection the sequence of intersecting gel ink and printed laser toner strokes. Egyptian Journal of Chemistry, 62(6), 1469-1491, https://doi.org/10.21608/EJCHEM.2019.6532.1549.

Verma, N., Kumar, R. and Sharma, V., 2018. Analysis of laser printer and photocopier toners by spectral properties and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 196, 40-48, https://doi.org/10.1016/j.saa.2018.02.001.

Verma, N., Sharma, V., Kumar, R., Sharma, R., Joshi, M.C., Umapathy, G.R., Ohja, S. and Chopra, S., 2019. On the spectroscopic examination of printed documents by using a field emission scanning electron microscope with energy-dispersive X-ray spectroscopy (FE-SEM-EDS) and chemometric methods: application in forensic science. Analytical and Bioanalytical Chemistry, 411(16), 3477-3495, https://doi.org/10.1007/s00216-019-01824-z.

Brech, F. and Cross, L., 1962. Optical microemission stimulated by a ruby laser. Applied Spectroscopy, 16(2), 59-64.

Kaiser, J., Novotný, K., Martin, M.Z., Hrdlička, A., Malina, R., Hartl, M. and Kizek, R., 2012. Trace elemental analysis by laser-induced breakdown spectroscopy—biological applications. Surface Science Reports, 67(11-12), 233-243.

Rehse, S.J., Salimnia, H. and Miziolek, A.W., 2012. Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications. Journal of Medical Engineering and Technology, 36(2), 77-89.

Santos, D.J., Nunes, L.C., de Carvalho, G.G.A., Gomes, M.D.S., de Souza, P.F., Leme, F.D.O. and Krug, F.J., 2012. Laser-induced breakdown spectroscopy for analysis of plant materials: a review. Spectrochimica Acta Part B: Atomic Spectroscopy, 71-72, 3-13.

Pořízka, P., Prochazková, P., Prochazka, D., Sládková, L., Novotný, J., Petrilak, M. and Kaiser, J., 2014. Algal biomass analysis by laser-based analytical techniques—a review. Sensors, 14(12), 17725-17752.

Harmon, R.S., Russo, R.E. and Hark, R.R., 2013. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: a comprehensive review. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 11-26.

Corsi, M., Cristoforetti, G., Hidalgo, M., Legnaioli, S., Palleschi, V., Salvetti, A., Tognoni, E. and Allebona, C., 2003. Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Applied Optics, 42, 6133-6137.

Ahmed, H.E. and Nassef, O.A., 2013. From Ptolemaic to modern inked linen via laser induced breakdown spectroscopy (LIBS). Analytical Methods, 5, 3114-3121.

Ponterio, R., Trusso, S., Vasi, C., La Torre, G.F. and Raffa, A.T., 2008. Laser induced breakdown spectroscopy for the analysis of archaeological dyes from Licata (Sicily). Radiation Effects and Defects in Solids, 163(4-6), 535-543.

Noll, R., 2012. Laser-induced Breakdown Spectroscopy Fundamentals and Applications. Berlin: Springer.

Yun, J.I., Klenze, R. and Jae-Il, K., 2002. Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt. Part I: Characterization and evaluation of the method. Applied Spectroscopy, 56(4), 437-448.

Oujja, M., Vila, A., Rebollar, E., García, J.F. and Castillejo, M., 2005. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 60(7-8), 1140-1148, https://doi.org/10.1016/j.sab.2005.05.021.

Mateo, M.P., Ctvrtnickova, T. and Nicolas, G., 2009. Characterization of pigments used in painting by means of laser-induced plasma and attenuated total reflectance FTIR spectroscopy. Applied Surface Sciences, 255, 5172-5176.

Pořízka, P., Klus, J., Képe, E., Prochazka, D., Hahn, D.W. and Kaiser, J., 2018. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochimica Acta Part B: Atomic Spectroscopy 148, 65-82, https://doi.org/10.1016/j.sab.2018.05.030.

Król, M., Gondko, K., Kula, A., Własiuk, P., del Hoyo-Meléndez, J.M. and Kościelniak, P., 2020. Characterization of the elemental composition of Polish banknotes by X-ray fluorescence and laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 169, https://doi.org/10.1016/j.sab.2020.105898.

Almirall, J., 2017. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Laser Induced Breakdown Spectroscopy (LIBS) Analyses of Paper, Inks, and Soils. [online] Available at: https://www.ojp.gov/pdffiles1/nij/grants/250537.pdf.

Zhang, T., Tang, H. and Li, H., 2018. Chemometrics in laser-induced breakdown spectroscopy. Journal of Chemometrics, 32(11), https://doi.org/10.1002/cem.2983.

Spizzichino, V. and Fantoni, R., 2014. Laser induced breakdown spectroscopy in archeometry: A review of its application and future perspectives. Spectrochimica Acta Part B: Atomic Spectroscopy, 99, 201-209, https://doi.org/10.1016/j.sab.2014.07.003.

Ikezawa, S., Wakamatsu, M., Pawlat, J. and Ueda, T., 2011. Multi-spectral analytical systems using LIBS and LII techniques. In: S.C. Mukhopadhyay, A. Lay-Ekuakille and A. Fuchs, eds. New Developments and Applications in Sensing Technology. Berlin: Springer, pp. 207-232.

Anabitarte, F., Cobo, A. and Lopez-Higuera, J.M., 2012. Laser-induced breakdown spectroscopy: Fundamentals, applications, and challenges. ISRN Spectroscopy, 2012, https://doi.org/10.5402/2012/285240.

Haase, E., Arroyo, L. and Trejos, T., 2020. Classification of printing inks in pharmaceutical packages by laser-induced breakdown spectroscopy and attenuated total reflectance-fourier transform infrared spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 172, https://doi.org/10.1016/j.sab.2020.105963.

Elsherbiny, N. and Nassef, O.A., 2015. Wavelength dependence of laser induced breakdown spectroscopy (LIBS) on questioned document investigation. Science and Justice, 55(4), 254-263, https://doi.org/10.1016/j.scijus.2015.02.002.

Wei, J., Zhang, T., Dong, J., Sheng, L., Tang, H., Yang, X. and Li, H., 2015. Quantitative determination of Cr in ink by laser-induced breakdown spectroscopy (LIBS) using ZnO as adsorbent. Chemical Research in Chinese Universities, 31, 909-913, https://doi.org/10.1007/s40242-015-5210-3.

Pollock, D. and Coulon, R., 1996. Life cycle assessment of an inkjet print cartridge. Proceedings of the 1996 IEEE International Symposium on Electronics and the Environment, Texas, USA, May 6-8, 1996, pp.154-160.

National Institute of Standards and Technology, 2023. National Institute of Standards and Technology. [online] Available at: https://www.nist.gov/.

Al-Ameri, M.A., Ciylan, B. and Mahmood, B., 2022. Spectral data analysis for forgery detection in official documents: A network-based approach. Electronics, 11(23), https://doi.org/10.3390/electronics11234036.

Hui, Y.W., Mahat, N.A., Ismail, D. and Ibrahim, R.K.R., 2019. Laser-induced breakdown spectroscopy (LIBS) for printing ink analysis coupled with principle component analysis (PCA). AIP Conference Proceedings, 2155(1), https://doi.org/10.1063/1.5125514.

Hoehse, M., Mory, D., Florek, S., Weritz, F., Gornushkin, I. and Panne, U., 2009. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(11-12), 1219-1227, https://doi.org/10.1016/j.sab.2009.09.004.

Hilario, F.F., Lima de Mello, M. and Pereira-Filho, R., 2021. Forensic analysis of hand-written documents using laser-induced breakdown spectroscopy (LIBS) and chemometrics. Analytical Methods, 13(2), 232-241, https://doi.org/10.1039/d0ay02089c.

Sadam, H.S., Habana, S.A. and Ali, A.H., 2019. Optimize of LIBS setup to the determination of laser breakdown power of writing inks. Chemical and Process Engineering Research, 61(24), 24-34, https://doi.org/10.7176/cper/61-05.

Lennard, C., El-Deftar, M.M. and Robertson, J., 2015. Forensic application of laser induced breakdown spectroscopy for the discrimination of questioned documents. Forensic Science International, 254, 68-79, https://doi.org/10.1016/j.forsciint.2015.07.003.

Trejos, T., Corzo, R., Subedi, K. and Almirall, J., 2014. Characterization of toners and inkjets by laser ablation spectrochemical methods and scanning electron microscopy-energy dispersive x-ray spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 92, 9-22, https://doi.org/10.1016/j.sab.2013.11.004.

Metzinger, A., Rajkó, R. and Galbács, G., 2014. Discrimination of paper and print types based on their laser induced breakdown spectra. Spectrochimica Acta Part B: Atomic Spectroscopy, 94-95, 48-57, https://doi.org/10.1016/j.sab.2014.03.006.

Subedi, K., Trejos, T. and Almirall, J., 2015. Forensic analysis of printing inks using tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 103-104, 76-83, https://doi.org/10.1016/j.sab.2014.11.011.

Król, M., Kowalska, D. and Kościelniak, P., 2017. Examination of Polish identity documents by laser induced breakdown spectroscopy. Analytical Letters, 51(10), 1592-1604, https://doi.org/10.1080/00032719.2017.1384833.

Gonzaga, F.B., Rocha, W.F.D.C. and Correa, D.N., 2015. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics. Spectrochimica Acta Part B, 109, 24-30, https://doi.org/10.1016/j.sab.2015.04.011.

Tian-long, Z., Shan, W.U., Hong-sheng, T., Kang, W., Yi-xiang, D. and Hua, L.I., 2015. Progress of chemometrics in laser-induced breakdown spectroscopy analysis. Chinese Journal of Analytical Chemistry, 43(6), 939-948, https://doi.org/10.1016/S1872-2040(15)60832-5.

Martinez-Lopez, C., Sakayanagi, M. and Almirall, J. R., 2018. Elemental analysis of packaging tapes by LA-ICP-MS and LIBS. Forensic Chemistry, 8, 40-48, https://doi.org/10.1016/j.forc.2018.01.004.

U.S. Geological Survey, 2011. Minerals Yearbook. Metals and Minerals 2008. Vol. 1. Washinton: U.S. Government Printing Office.

Iftime, G., Vanbesien, D.W., Birau, M.M., Wosnick, J.H., Kazmaier, P.M., 2013. Toner Containing Fluorescent Nanoparticles, USA. Patent No. 8,541,154 B2.

Rzecki, K., Sośnicki, T., Baran, M., Niedźwiecki, M., Król, M., Łojewski, T., Acharya, U.R., Yildirim, Ö. and Pławiak, P., 2018. Application of computational intelligence methods for the automated identification of paper-ink samples based on LIBS. Sensors, 18(11), https://doi.org/10.3390/s18113670.

Gorziza, R., González, M., de Carvalho, C.M.B., Ortiz, R.S., Ferrão, M.F. and Limberger, R.P., 2021. Chemometric approaches in questioned documents. Brazillian Journal of Analytical Chemistry, 9(34), 35-51, https://doi.org/10.30744/brjac.2179-3425.RV-32-2021.

Kumar, R. and Sharma, V., 2018. Chemometrics in forensic science. Trends in Analytical Chemistry, 105, 191-201, https://doi.org/10.1016/j.trac.2018.05.010.

Khofar, P.N.A., Karim, U.K.A., Elias, E., Safian, M.F. and Halim, M.I.A., 2022. Trends of forensic analysis of pen ink using attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy. Indonesian Journal of Chemistry, 22(4), 1144-1154. https://doi.org/10.22146/ijc.72282.

Braz, A., López-López, M. and Gárcia-Ruiz, C., 2013. Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic Science International, 232, 206-212, https://doi.org/10.1016/j.forsciint.2013.07.017.

Sharaa, S.I., Elmagd, A.A.S.A., Bakr, A.-S.A., Moustafa, Y.M., El-Aziz, I.M.A. and Shabana, A., 2019. Some of the physical and chemical characterizations applied for the laser printers toner and ballpoint pen inks to determine the sequence of their intersections. Egyptian Journal of Chemistry, 62(11), 2047-2060. https://doi.org/10.21608/EJCHEM.2019.10960.1702.

Claverie, F., 2020. Laser ablation. In: D. Beauchemin, ed. Sample Introduction Systems in ICPMS and ICPOES. Amsterdam: Elsevier, pp. 469-531.

Rinke-Kneapler, C.N. and Sigman, M.E., 2014. Applications of laser spectroscopy in forensic science. In: M. Baudelet, ed. Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications. Cambridge: Woodhead Publishing Limited, pp. 461-495.

Montasari, R., Carroll, F., Macdonald, S., Jahankhani, H., Hosseinian-Far, A. and Daneshkhah, A., 2020. Application of artificial intelligence and machine learning in producing actionable cyber threat intelligence. In: R. Montasari, H. Jahankhani, R. Hill. and S. Parkinson, eds. Digital Forensic Investigation of Internet of Things (IOT) Devices. Cham: Springer, pp. 47-64.

Valderrama, L. and Valderrama, P., 2016. Nondestructive identification of blue pen inks for documentoscopy purpose using iPhone and digital image analysis including an approach for interval confidence estimation in PLS-DA models validation. Chemometrics and Intelligent Laboratory Systems, 156, 188-195, https://doi.org/10.1016/j.chemolab.2016.06.009.

Kim, T.K., 2015. T test as a parametric statistic. Korean Journal of Anesthesiology, 68(6), 540-546, http://dx.doi.org/10.4097/kjae.2015.68.6.540.

Xu, M., Fralick, D., Zheng, J.Z., Wang, B., Tu, X.M. and Feng, C., 2017. The differences and similarities between two-sample t-test and paired t-test. Shanghai Archives of Psychiatry, 29(3), 184-188, https://doi.org/10.11919/j.issn.1002-0829.217070.

Hayes, A., 2023. Empirical Rule: Definition, Formula, Example, How It’s Used, [online] Available at: https://www.investopedia.com/terms/e/empirical-rule.asp.

Coleman, D. and Vanatta, L., 2008. Statistics in Analytical Chemistry: Part 32-Detection Limits Via 3-Sigma, [online] Available at: https://www.americanlaboratory.com/914-Application-Notes/1104-Part-32.