Effects of NPK Fertilizer on Growth, Phytochemical Content and Antioxidant Activity of Purslane (Portulaca grandiflora)

Main Article Content

Raihan Permana Putra
I Ketut Mediartha
M Alfa Daffadhiya Setiawan
Puji Ayu Ningtyas Sujai
Rini Anggi Arista
Rizky Putra Kandi
Syarifah Iis Aisyah
Waras Nurcholis

Abstract

Purslane (Portulaca grandiflora) is a succulent plant that contains phytochemicals including flavonoids, carotenoids, polyphenolic acids, sterols, and reducing agents. The pharmacological properties of this plant include antioxidant activity, and the plant is used in sore throat and skin rashes medications, and for detoxification purposes. The plant’s secondary metabolite content is influenced by mineral nutrition. The types and amounts of plant secondary metabolites are determined by soil nutrients. Therefore, this research aimed to observe and analyze the NPK fertilizer effect on plant growth, total phenolics, and antioxidant activity in purslane. Purslane planting was carried out by applying NPK fertilizer (doses of 0, 100, 200 and 300 kg/ha) in August-October 2022 at the Green House of the Department of Biochemistry, IPB University, Indonesia. The total number of leaves and branches was found to be highest with 200 kg/ha dose of NPK fertilizer treatment. The highest total phenolic content, 0.7346 mg GAE/g FW, was found for the treatment with 100 kg/ha dose of NPK fertilizer. The highest increase in antioxidant activity was observed in extracts treated with 100 kg/ha (FRAP, CUPRAC) and 200 kg/ha (DPPH, ABTS) of NPK fertilizer. Therefore, applying NPK fertilizer at optimal doses can increase the plant growth, total phenolic content, and antioxidant activity of purslane. From the research, the recommended doses was 100 kg/ha, which gave the highest total phenolic, and the highest single electron transfer antioxidant activity (FRAP, CUPRAC). Moreover, there was no significant difference in growth parameters at higher doses.

Article Details

Section
Original Research Articles

References

Husnawati, Purwanto, U.M.S. and Rispiriandi, A.A., 2020. Perbedaan bagian tanaman krokot (Portulaca grandiflora Hook.) terhadap kandungan total fenolik dan flavonoid serta aktivitas antioksidan. Current Biochemistry, 7(1),10-20. (in Indonesian)

Sari, B.P., Karno, K. and Anwar, S., 2017. Karakteristik morfologi dan sitologi tanaman sutra bombay (Portulaca grandiflora Hook.) hasil poliploidisasi dengan kolkisin pada berbagai konsentrasi dan frekuensi aplikasi. Journal of Argo Complex, 1(2), 39-48, https://doi.org/10.14710/joac.1.2.39-48. (in Indonesian)

Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N., 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8, 1-12.

Fernández-Poyatos, M.D.P., Llorent-Martínez, E.J. and Ruiz-Medina, A., 2021. Phytochemical composition and antioxidant activity of Portulaca oleracea: Influence of the steaming cooking process. Foods, 10, https://doi.org/10.3390/foods10010094.

Mutua, C.M., Ogweno, J.O. and Gesimba, R.M., 2021. Effect of NPK fertilizer rates on secondary metabolites of pepino melon (Solanum muricatum Aiton). Journal of Horticulture and Forestry, 13(1), 25-34, https://doi.org/10.5897/jhf2020.0657.

Sun, J., Luo, H., Jiang, Y., Wang, L., Xiao, C. and Wong, L., 2022. Influence of nutrient (NPK) factors of growth, and pharmacodynamic component biosynthesis of Atractylodes chinensis: An insight on acetyl-CoA carboxylase (ACC), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and farnesyl pyrophosphate synthase (FPPS) signaling responses. Front. Plant. Sci., 13, https://doi.org/10.3389/fpls.2022.799201.

Kamaluddin, A.A., Mohsin, R.M. and Kamil, A.N., 2022. Effects of NPK nano fertilizer on vegetative, flowering, and content traits of Kalanchoe blossfeldiana. Tikrit Journal for Agricultural Sciences, 22(3), 113-119.

Khalofah, A., Ghramh, H.A., Al-Qthanin, R.N. and L’taief, B., 2022. The impact of NPK fertilizer on growth and nutrient accumulation in juniper (Juniperus procera) trees grown on fire-damaged and intact soils. PLoS ONE, 17(1), https://doi.org/10.1371/journal.pone.0262685.

BPS, 2023. Curah Hujan Di Stasiun Pengamatan Pengamatan Klimatologi Bogor Menurut Bulan 2019-2022. [online] Available at: https://jabar.bps.go.id/indicator/151/430/1/-curah-hujan-di-stasiun-pengamatan-klimatologi-bogor-menurut-bulan.html. (in Indonesian)

BPS, 2023. Pengamatan Suhu Di Stasiun Klimatologi Bogor Menurut Bulan 2019-2022. [online] Available at: https://jabar.bps.go.id/indicator/151/426/1/pengamatan-suhu-di-stasiun-klimatologi-bogor-menurut-bulan-.html. (in Indonesian)

BPS, 2023. Kelembaban Udara Di Stasion Pengamatan Geofisika Bogor Menurut Bulan, 2021-2022. [online] Available at: https://jabar.bps.go.id/indicator/151/760/1/kelembaban-udara-di-stasion-pengamatan-gofisika-bogor-menurut-bulan.html. (in Indonesian)

Calvindi, J., Syukur, M. and Nurcholis, W., 2020. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas, 21(6), 2420-2424.

Nurcholis, W., Alfadzrin, R., Izzati, N., Arianti, R., Vinnai, B.Á., Sabri, F., Kristóf, E. and Artika, I.M., 2022. Effects of methods and durations of extraction on total flavonoid and phenolic contents and antioxidant activity of java cardamom (Amomum compactum Soland Ex Maton) fruit. Plants (Basel), 11(17), https://doi.org/10.3390/plants11172221.

Aisyah, S.I., Oktavia, A.W.P., Ayuningtyas, A.A., Putra, R.P., Prassiska, S., Jamilah, S. and Nurcholis, W., 2023. Short communication: differences in phytochemical compounds and antioxidant activity of Portulaca oleracea and Portulaca grandiflora. Biodiversitas, 24(3), 1385-1390, https://doi.org/10.13057/biodiv/d240307.

Batubara, I., Komariah, K., Sandrawati, A. and Nurcholis, W., 2020. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. Leaves using chemometric analysis. Scientific Reports, 10, https://doi.org/10.1038/s41598-020-77991-2.

Nurcholis, W., Khumaida, N., Syukur, M. and Bintang, M., 2017. Evaluation of free radical scavenging activity of ethanolic extract from promising accessions of Curcuma aeruginosa RoxB. Molekul, 12(2), 133-138, https://doi.org/10.20884/1.jm.2017.12.2.350.

Nurcholis, W., Ma’rifah, K., Artika, M.I., Aisyah, S.I. and Priosoeryanto, B.P., 2021. Optimization of total flavonoid content from cardamom fruits using a simplex-centroid design, along with the evaluation of the antioxidant properties. Tropical Journal of Natural Product Research, 5(8), 1382-1388.

Giordano, M.E., Caricato, R. and Lionetto, M.G, 2020. Concentration dependence of the antioxidant and prooxidant activity of trolox in HeLa cells: involvement in the induction of apoptotic volume decrease. Antioxidant, 9(11), https://doi.org/10.3390/antiox9111058.

Arab, A., Zamani, G.R., Sayyari, M.H. and Asili, J., 2015. Effects of chemical and biological fertilizers on morpho-physiological traits of Marigold (Calendula officinalis L.). European Journal of Medicinal Plants, 8(1), 60-68, https://doi.org/10.9734/EJMP/2015/16697.

Budiarto, K., Sulyo, Y., Dwi, E.S.N. and Maaswinkel, R.H.M., 2006. Effect of types of media and NPK fertilizer on the rooting capacity of chrysanthemum cuttings. Indonesian Journal of Agricultural Science, 7(2), 67-70.

Zewdie, I., and Reta, Y., 2021. Review on the role of soil macronutrient (NPK) on the improvement and yield and quality of agronomic crops. Direct Research Journal of Agriculture and Food Science, 9(1), 7-11, https://doi.org/10.26765/DRJAFS23284767.

Hariyadi, B.W., Sutiono, Huda, N., Pratiwi, Y.I. and Nisak, F., 2020. The effect of giving NPK fertilizer on growth and results plant purple (Solanum melongena L.). Agricultural Science and Agriculture Engineering, 4(1), 54-62.

Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H. and Chen, S., 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10), https://doi.org/10.3390/molecules21101374.

Zhang, Y., Cai, P., Cheng, G. and Zhang, Y., 2022. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), https://doi.org/10.1177/1934578X211069721.

Mikołajczak, N., Tańska, M. and Ogrodowska, D., 2021. Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends in Food Science and Technology, 113, 110-138, https://doi.org/10.1016/j.tifs.2021.04.046.

Vasca-Zamfir, D., Balan, D., Luta, G., Gherghina, E. and Tudor, V.C., 2019. Effect of fertilization regime on Murraya exotica plants growth and bioactive compounds. Romanian Biotechnological Letter, 24(2), 245-253, https://doi.org/10.25083/rbl/24.2/245.253.

Nguyen, P.N. and Niemeyer, E.D., 2008. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 56 (18), 8685-8691.

Munene, R., Changamu, E., Korir, N. and Joseph, G.-O., 2017. Effects of different nitrogen forms on growth, phenolics, flavanoids, and antioxidant activity in amaranth spesies. Tropical Plant Research, 4(1), 81-89, https://doi.org/10.22271/tpr.2017.v4.i1.012.

Gupta, D., 2015. Methods for determination of antioxidant capacity: A review. International Journal of Pharmaceutical Sciences and Research, 6, 546-566.

Yamin, Y., Sabarudin, S., Zubaydah, W.O.S., Sahumena, M.H., Arba, M., Elnawati, E., Andriani, R. and Suryani, S., 2021. Determination of antiradical activity, total phenolic and flavonoid contents of kamena-mena (Clerodendrum paniculatum. L) leaves. Tropical Journal of Natural Product Research, 5(2), 287-293.

Sadeer, N.B., Montesano, D., Albrizio, S., Zengin, G. and Mahomoodally, M.F., 2020. The versatility of antioxidant assays in food science and safety- chemistry, applications, strengths, and limitations. Antioxidant (Basel), 9(8), https://doi.org/10.3390/antiox9080709.

Magãlhaes, L.M., Sugendo, M.A. Reis, S. and Lima, J.L.F.C., 2008. Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1-19.

Shah, P. and Modi, H.A., 2015. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science and Engineering Technology, 3(6), 636-641.

Skywarylo-Bednarz and Krzepilko, A., 2009. Effect of various NPK fertilizer doses on total antioxidant capacity of soil and amaranth leaves (Amaranthus cruentus L.). International Agrophysics, 23(1), 61-65.

Oleyede, F.M., Obisesan, I.O., Agbaje, G.O. and Obuotor, E.M., 2012. Effect of NPK fertilizer on chemical composition of pumpkin (Cucurbita pepo Linn.) seeds. The Scientific World Journal, 2012, https://doi.org/10.1100/2012/808196.

Amarowicz, R., Cwalina-Ambroziak, B., Janiak, M.A. and Bogucka, B., 2020. Effect of N fertilization on the content of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.) tubers and their antioxidant capacity. Agronomy, 10(8), https://doi.org/10.3390/agronomy10081215.

Rachmayanti, A.S., Effendi, N. and Muflihunna, A., 2021. Analysis of antioxidant activity of carrots (Daucus carrota L.) using FRAP and CUPRAC methods. Famrasains, 6(1), 37-41, https://doi.org/10.22219/farmasains.v6i1.13981.

Yefrida, Ashikin, N., Ashikin, N. and Reflida, 2015. Validasi metode FRAP modifikasi pada penentuan kandungan antioksidan total dalam sampel manga dan rambutan. Jurnal Riset Kimia 8(2), 170-175. (in Indonesia)

Ibrahim, M.H., Jaafar, H.Z.E., Karimi, E. and Ghasemzadeh, A., 2013. Impact of organic and inorganic fertilizers application on the phytochemical and antioxidant activity of kacip fatimah (Labisia pumila Benth). Molecules, 18, 10973-10988. DOI:10.3390/molecules180910973.

Haukioja, E., Ossipov, V., Koricheva, J., Honkanen, T., Larsson, S. and Lempa, K., 1998. Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization. Chemoecology, 8, 133-139.

Salahas, G., Papasavvas, A., Giannakopoulos, E., Tselios, T., Konstantopoulou, H. and Savvas, D. 2011. Impact of nitrogen deficiency on biomass production, gas exchange, and betacyanin and total phenol concentrations in red beet (Beta vulgaris L.) plants. European Journal of Horticultural Science, 76(5), 194-200.