Antibiofilm and Anti-quorum Sensing Activities of Biological Nanoparticles

Main Article Content

Soufiane Elmegdar
Raja Elkheloui
Asma Laktib
Rachida Mimouni
Fatima Hamadi

Abstract

Despite the availability of numerous antibacterial treatments, infectious diseases caused by multidrug-resistant bacteria remain a significant public health threat and are rapidly becoming the leading cause of global mortality. The emergence of multidrug resistance is due to the extensive use of high-dose antibiotics. Additionally, biofilm is another barrier to effective disease treatment because bacteria trapped in biofilm can resist antimicrobial agents. Therefore, the development of new strategies to combat multidrug-resistant bacteria and biofilm-associated infections is urgently needed. This is why special attention has been given to a recent area, "nanotechnology". Nanoparticles could be a source of hope for this problem as they can not only eliminate biofilms, but also interfere with quorum sensing (QS). Several studies have highlighted the advantages of biosynthesis over physiochemical synthesis of nanoparticles. These biologically synthesized nanoparticles demand special attention since this green technology combines energy and cost efficiency with environmental friendliness. This review summarizes the use of biological nanoparticles as biofilm and QS-inhibitors to combat biofilm-associated infections.

Article Details

Section
Review Ariticle

References

Centers for Disease Control and Prevention (U.S.), 2019. Antibiotic Resistance Threats in the United States, 2019. [online] Available at: https://doi.org/10.15620/cdc:82532.

World Health Organization, 2020. 10 Global Health Issues to Track in 2021. [online] Available at: https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021.

Chakrabarty, S., Mishra, M.P. and Bhattacharyay, D., 2022. Targeting microbial bio-film: an update on MDR Gram-negative bio-film producers causing catheter-associated urinary tract infections. Applied Biochemistry and Biotechnology, 194(6), 2796-2830, https://doi.org/10.1007/s12010-021-03711-9.

Jia, J., Xue, X., Guan, Y., Fan, X. and Wang, Z., 2022. Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. Environmental Research, 213, https://doi.org/10.1016/j.envres.2022.113714.

Lahiri, D., Nag, M., Sheikh, H.I., Sarkar, T., Edinur, H.A., Pati, S. and Ray, R.R., 2021. Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology, 12, https://doi.org/10.3389/fmicb.2021.636588.

Domenico, E.G.D., Oliva, A. and Guembe, M., 2022. The current knowledge on the pathogenesis of tissue and medical device-related biofilm infections. Microorganisms, 10(7), https://doi.org/10.3390/microorganisms10071259.

Mayer, C., Muras, A., Parga, A., Romero, M., Rumbo-Feal, S., Poza, M. Ramos-Vivas, J. and Otero A., 2020. Quorum sensing as a target for controlling surface associated motility and biofilm formation in Acinetobacter baumannii ATCC®17978TM. Frontiers in Microbiology, 11, https://doi.org/10.3389/fmicb.2020.565548.

Chadha, J., Harjai, K. and Chhibber, S., 2022. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microbial Biotechnology, 15(6), 1695-1718, https://doi.org/10.1111/1751-7915.13981.

Addis, M.F., Pisanu, S., Monistero, V., Gazzola, A., Penati, M., Filipe, J., Mauro, S.D., Cremonesi, P., Castiglioni, B., Moroni, P., Pagnozzi, D., Tola, S. and Piccinini, R., 2022. Comparative secretome analysis of Staphylococcus aureus strains with different within-herd intramammary infection prevalence. Virulence, 13(1), 174-190, https://doi.org/10.1080/21505594.2021.2024014.

Xie, Y., Chen, J., Wang, B., Peng, A.-Y., Mao, Z.-W. and Xia, W., 2022. Inhibition of quorum-sensing regulator from Pseudomonas aeruginosa using a Flavone derivative. Molecules, 27(8), https://doi.org/10.3390/molecules27082439.

Sharifi, A. and Nayeri Fasaei, B., 2022. Selected plant essential oils inhibit biofilm formation and luxS ‐ and pfs ‐mediated quorum sensing by Escherichia coli O157:H7. Letters in Applied Microbiology, 74(6), 916-923, https://doi.org/10.1111/lam.13673.

Rasmussen, T.B., Bjarnsholt, T., Skindersoe, M.E., Hentzer, M., Kristoffersen, P., Köte, M., Nielsen, J., Eberl, L. and Givskov, M., 2005. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. Journal of Bacteriology, 187(5), 1799-1814, https://doi.org/10.1128/JB.187.5.1799-1814.2005.

Defoirdt, T., Brackman, G. and Coenye, T., 2013. Quorum sensing inhibitors: how strong is the evidence? Trends in Microbiology, 21(12), 619-624, https://doi.org/10.1016/j.tim.2013.09.006.

Nafee, N., Husari, A., Maurer, C.K., Lu, C., de Rossi, C., Steinbach, A., Hartmann, R. W., Lehr, C.-M. and Schneider, M., 2014. Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. Journal of Controlled Release, 192, 131-140, https://doi.org/10.1016/j.jconrel.2014.06.055.

Crisan, C.M., Mocan, T., Manolea, M., Lasca, L.I., Tăbăran, F.-A. and Mocan, L., 2021. Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11(3), https://doi.org/10.3390/app11031120.

Yılmaz, D., Günaydın, B.N. and Yüce, M., 2020. Nanotechnology in food and water security: on-site detection of agricultural pollutants through surface-enhanced Raman spectroscopy. Emergent Materials, 5(1), 105-132, https://doi.org/10.1007/s42247-022-00376-w.

Ramasamy, M. and Lee, J., 2016. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International, 2016, https://doi.org/10.1155/2016/1851242.

Obeizi, Z., Benbouzid, H., Bouarroudj, T., Tayeb, B., Chahrazed, B. and Djahoudi, A., 2020. Synthesis, characterization of (Ag-SnO2) nanoparticles and investigation of its antibacterial and anti-biofilm activities. Journal of New Technology and Materials, 10(2), 10-17.

Salem, S.S. and Fouda, A., 2021. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, 199, 344-370, https://doi.org/10.1007/s12011-020-02138-3.

Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A. and Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575, https://doi.org/10.1038/nrmicro.2016.94.

Donlan, R.M. and Costerton, J.W., 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167-193, https://doi.org/10.1128/CMR.15.2.167-193.2002.

Flemming, H.-C. and Wingender, J., 2010. The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633, https://doi.org/10.1038/nrmicro2415.

Khatoon, Z., McTiernan, C.D., Suuronen, E.J., Mah, T.-F. and Alarcon, E.I., 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4(12), https://doi.org/10.1016/j.heliyon.2018.e01067.

Costerton, J.W., 2007. The Biofilm Primer. Berlin: Springer.

Mahamuni-Badiger, P.P., Patil, P.M., Badiger, M.V., Patel, P.R., Thorat-Gadgil, B.S., Pandit, A. and Bohara, R.A., 2019. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Materials Science and Engineering: C, 108, https://doi.org/10.1016/j.msec.2019.110319.

Joo, H.-S. and Otto, M., 2012. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chemistry and Biology, 19(12), 1503-1513, https://doi.org/10.1016/j.chembiol.2012.10.022.

World Health Organization, 2017. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. [online] Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.

Arias, C.A. and Murray, B.E., 2015. A new antibiotic and the evolution of resistance. The New England Journal of Medicine, 372(12), 1168-1170, https://doi.org/10.1056/NEJMcibr1500292.

Levy, S.B. and Marshall, B., 2004. Antibacterial resistance worldwide: causes, challenges and responses. The Nature Medicine, 10(12), S122-129, https://doi.org/10.1038/nm1145.

Lewis, K., 2007. Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48-56, https://doi.org/10.1038/nrmicro1557.

Lebeaux, D., Ghigo, J.-M. and Beloin, C., 2014. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of Recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510-543, https://doi.org/10.1128/MMBR.00013-14.

Hall, C.W. and Mah, T.-F., 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276-301, https://doi.org/10.1093/femsre/fux010.

Fleming, D. and Rumbaugh, K., 2017. Approaches to dispersing medical biofilms. Microorganisms, 5(2), https://doi.org/10.3390/microorganisms5020015.

Cao, B., Christophersen, L., Thomsen, K., Sonderholm, M., Bjarnsholt, T., Jensen, P.O. Høiby, N. and Moser, C., 2015. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model. Journal of Antimicrobial Chemotherapy, 70(7), 2057-2063, https://doi.org/10.1093/jac/dkv058.

Machineni, L., 2020. Effects of biotic and abiotic factors on biofilm growth dynamics and their heterogeneous response to antibiotic challenge. Journal of Biosciences, 45, 1-12, https://doi.org/10.1007/s12038-020-9990-3.

Oubekka, S.D., Briandet, R., Fontaine-Aupart, M.-P. and Steenkeste, K., 2012. Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms. Antimicrobial Agents and Chemotherapy, 56(6), 3349-3358, https://doi.org/10.1128/AAC.00216-12.

Kowalski, C.H., Morelli, K.A., Schultz, D., Nadell, C.D. and Cramer, R.A., 2020. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proceedings of the National Academy of Sciences, 117(36), 22473-22483, https://doi.org/10.1073/pnas.2003700117.

Stewart, P.S., 2002. Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2), 107-113, https://doi.org/10.1078/1438-4221-00196.

Mah, T.-F.C. and O’Toole, G.A., 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34-39, https://doi.org/10.1016/S0966-842X(00)01913-2.

Olsen, I., 2015. Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 34, 877-886, https://doi.org/10.1007/s10096-015-2323-z.

Nagasawa, R., Sato, T., Nomura, N., Nakamura, T. and Senpuku, H., 2020. Potential risk of spreading resistance genes within extracellular-DNA-dependent biofilms of Streptococcus mutans in response to cell envelope stress induced by sub-MICs of bacitracin. Applied and Environmental Microbiology, 86(16), https://doi.org/10.1128/AEM.00770-20.

Partridge, S.R., Kwong, S.M., Firth, N. and Jensen, S.O., 2018. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), https://doi.org/10.1128/CMR.00088-17.

Carattoli, A., 2013. Plasmids and the spread of resistance. International Journal of Medical Microbiology, 303(6-7), 298–304, https://doi.org/10.1016/j.ijmm.2013.02.001.

Calero-Cáceres, W., Ye, M. and Balcázar, J.L., 2019. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends in Microbiology, 27(7), 570-577, https://doi.org/10.1016/j.tim.2019.02.008.

Van Meervenne, E., De Weirdt, R., Van Coillie, E., Devlieghere, F., Herman, L. and Boon, N., 2014. Biofilm models for the food industry: hot spots for plasmid transfer? Pathogens and Disease, 70(3), 332-338, https://doi.org/10.1111/2049-632X.12134.

Król, J.E., Wojtowicz, A.J., Rogers, L.M., Heuer, H., Smalla, K., Krone, S.M. and Top, E. M., 2013. Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid, 70(1), 110-119, https://doi.org/10.1016/j.plasmid.2013.03.003.

Madsen, J.S., Burmølle, M., Hansen, L.H. and Sørensen, S.J., 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology and Medical Microbiology, 65(2), 183-195, https://doi.org/10.1111/j.1574-695X.2012.00960.x.

Schirmer, W., 1999. Nanoparticles and nanostructured films, preparation, characterization and applications. Zeitschrift für Physikalische Chemie, 213(2), 226-227, https://doi.org/10.1524/zpch.1999.213.Part_2.226.

Heiligtag, F.J. and Niederberger, M., 2013. The fascinating world of nanoparticle research. Materials Today, 16(7-8), 262-271, https://doi.org/10.1016/j.mattod.2013.07.004.

Tran, Q.H., Nguyen, V.Q. and Le, A.-T., 2013. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), https://doi.org/10.1088/2043-6262/4/3/033001.

Ahmed, S., Saifullah, Ahmad, M., Swami, B.L. and Ikram, S., 2016. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), https://doi.org/10.1016/j.jrras.2015.06.006.

Jameel, M.S., Aziz, A.A. and Dheyab, M.A., 2020. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Processing and Synthesis, 9(1), 386-398, https://doi.org/10.1515/gps-2020-0041.

Gautam, P. K., Singh, A., Misra, K., Sahoo, A. K. and Samanta, S. K., 2019. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. Journal of Environmental Management, 231, 734-748, https://doi.org/10.1016/j.jenvman.2018.10.104.

Tufail, S., Liaqat, I., Ali, S., Ulfat, M., Shafi, A., Sadiqa, A. Iqbal, R. and Ahsan, F., 2022. Bacillus licheniformis (MN900686) Mediated synthesis, characterization and antimicrobial potential of silver nanoparticles. Journal of Oleo Science, 71(5), 701-708, https://doi.org/10.5650/jos.ess21441.

Bezza, F.A., Tichapondwa, S.M. and Chirwa, E.M.N., 2020. Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. Journal of Hazardous Materials, 393, https://doi.org/10.1016/j.jhazmat.2020.122319.

Kumar, M., Upadhyay, L.S.B., Kerketta, A. and Vasanth, D., 2022. Extracellular synthesis of silver nanoparticles using a novel bacterial strain Kocuria rhizophila BR-1: Process optimization and evaluation of antibacterial activity. BioNanoScience, 12(2), 423-438, https://doi.org/10.1007/s12668-022-00968-0.

Hieu, H.N., Trang, D.T.H., Hien, V.T.T., Nghia, N.V., Lam, N.T. and Nguyen, T.M.D., 2022. Microorganism-mediated green synthesis of silver nanoparticles using Aspergillus niger and Bacillus megaterium. Digest Journal of Nanomaterials and Biostructures, 17, 359-367, https://doi.org/10.15251/DJNB.2022.171.359.

Mabrouk, M., Elkhooly, T.A. and Amer, S.K. 2021. Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles. Journal of Genetic Engineering and Biotechnology, 19(1), https://doi.org/10.1186/s43141-021-00153-y.

Zamanpour, N., Mohammad Esmaeily, A., Mashreghi, M., Shahnavaz, B., Reza Sharifmoghadam, M. and Kompany, A. 2021. Application of a marine luminescent Vibrio sp. B4L for biosynthesis of silver nanoparticles with unique characteristics, biochemical properties, antibacterial and antibiofilm activities. Bioorganic Chemistry, 114, https://doi.org/10.1016/j.bioorg.2021.105102.

Jafari, M., Rokhbakhsh-Zamin, F., Shakibaie, M., Moshafi, M.H., Ameri, A., Rahimi, H.R. and Forootanfar, H., 2018. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatalysis and Agricultural Biotechnology, 15, 245-253, https://doi.org/10.1016/j.bcab.2018.06.014.

Shunmugam, R., Renukadevi Balusamy, S., Kumar, V., Menon, S., Lakshmi, T. and Perumalsamy, H., 2021. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. Journal of King Saud University - Science, 33(1), https://doi.org/10.1016/j.jksus.2020.101260.

Eshghi, S. and Kashi, F.J., 2022. Bacterial synthesis of magnetic Fe3O4 nanoparticles: Decolorization acid red 88 using FeNPs/Ca-Alg beads. Arabian Journal of Chemistry, 15(9), https://doi.org/10.1016/j.arabjc.2022.104032.

Jayabalan, J., Mani, G., Krishnan, N., Pernabas, J., Devadoss, J.M. and Jang, H.T., 2019. Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibacterial and anti-biofilm activity. Biocatalysis and Agricultural Biotechnology, 21, https://doi.org/10.1016/j.bcab.2019.101327.

Nordmeier, A., Merwin, A., Roeper, D.F. and Chidambaram, D., 2018. Microbial synthesis of metallic molybdenum nanoparticles. Chemosphere, 203, 521-525, https://doi.org/10.1016/ j.chemosphere.2018.02.079.

Bukhari, S.I., Hamed, M.M., Al-Agamy, M.H., Gazwi, H.S.S., Radwan, H.H. and Youssif, A.M., 2021. Biosynthesis of copper oxide nanoparticles using Streptomyces MHM38 and its biological applications. Journal of Nanomaterials, 2021, 1-16, https://doi.org/10.1155/2021/6693302.

Sun, Y., Shi, Y., Jia, H., Ding, H., Yue, T. and Yuan, Y., 2021. Biosynthesis of selenium nanoparticles of Monascus purpureus and their inhibition to Alicyclobacillus acidoterrestris. Food Control, 130, https://doi.org/10.1016/j.foodcont.2021.108366.

Riaz, M., Mutreja, V., Sareen, S., Ahmad, B., Faheem, M., Zahid, N., Jabbour, G. and Park, J., 2021. Exceptional antibacterial and cytotoxic potency of monodisperse greener AgNPs prepared under optimized pH and temperature. Scientific Reports, 11(1), https://doi.org/10.1038/s41598-021-82555-z.

Jahan, I., Erci, F. and Isildak, I., 2021. Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of ‘Golden Delicious’ apple pulp and cumin seeds with antibacterial and antioxidant activity. SN Applied Sciences, 3, 1-14, https://doi.org/10.1007/s42452-020-04046-6.

Alahmad, A., Feldhoff, A., Bigall, N.C., Rusch, P., Scheper, T. and Walter, J.-G., 2021. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaterials, 11(2), https://doi.org/10.3390/nano11020487.

Sukweenadhi, J., Setiawan, K.I., Avanti, C., Kartini, K., Rupa, E.J. and Yang, D.-C., 2021. Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. South African Journal of Chemical Engineering, 38(1), 1-8, https://doi.org/10.1016/j.sajce.2021.06.008.

Alzahrani, S., Ali, H.M., Althubaiti, E.H. and Ahmed, M.M., 2022. Green synthesis of gold nanoparticles, silver nanoparticles and gold-silver alloy nanoparticles using Ziziphus spina-christi leaf extracts and antibacterial activity against multidrug-resistant bacteria. Indian Journal of Pharmaceutical Sciences, 84, 42-53, https://doi.org/10.36468/pharmaceutical-sciences.spl.490.

Chen, J., Wei, D., Liu, L., Nai, J., Liu, Y., Xiong, Y., Peng, J., Mahmud, S. and Liu, H., 2021. Green synthesis of Konjac glucomannan templated palladium nanoparticles for catalytic reduction of azo compounds and hexavalent chromium. Materials Chemistry and Physics, 267, https://doi.org/10.1016/j.matchemphys.2021.124651.

Ali, N.H. and Mohammed, A.M., 2021. Biosynthesis and characterization of platinum nanoparticles using Iraqi Zahidi dates and evaluation of their biological applications. Biotechnology Reports (Amst), 30, https://doi.org/10.1016/j.btre.2021.e00635.

Goyal, P., Bhardwaj, A., Mehta, B.K. and Mehta, D., 2021. Research article green synthesis of zirconium oxide nanoparticles (ZrO2NPs) using Helianthus annuus seed and their antimicrobial effects. Journal of the Indian Chemical Society, 98(8), https://doi.org/10.1016/j.jics.2021.100089.

Narath, S., Koroth, S.K., Shankar, S.S., George, B., Mutta, V., Wacławek, S. Cernk, M., Padil, V.V.T. and Varma, R.S., 2021. Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation. Nanomaterials, 11(6), https://doi.org/10.3390/nano11061558.

Armendariz, V., Herrera, I., Peralta-videa, J.R.; Jose-yacaman, M., Troiani, H., Santiago, P. and Gardea-Torresdey, J.L., 2004. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research, 6, 377-382.

Sathishkumar, M., Sneha, K. and Yun, Y.-S., 2010. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958-7965, https://doi.org/10.1016/j.biortech.2010.05.051.

Nishanthi, R., Malathi, S., John Paul, S. and Palani, P., 2019. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering: C, 96, 693-707, https://doi.org/10.1016/j.msec.2018.11.050.

Al-Radadi, N.S., 2019. Green synthesis of platinum nanoparticles using Saudi’s dates extract and their usage on the cancer cell treatment. Arabian Journal of Chemistry, 12(3), 330-349, https://doi.org/10.1016/j.arabjc.2018.05.008.

Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Deepak, V., Pandian, S.R.K., Muniyandi, J. Hariharan, N. and Eom, S.H., 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328-335, https://doi.org/10.1016/j.colsurfb.2009.07.048.

Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E. and Kalinina, N. O., 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35-44.

Murei, A., Pillay, K., Govender, P., Thovhogi, N., Gitari, W.M. and Samie, A., 2021. Synthesis, characterization and in vitro antibacterial evaluation of Pyrenacantha grandiflora conjugated silver nanoparticles. Nanomaterials, 11(6), https://doi.org/10.3390/nano11061568.

Ahmed, S., Ahmad, M., Swami, B.L. and Ikram, S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17-28, https://doi.org/10.1016/j.jare.2015.02.007.

Arsiya, F., Sayadi, M.H. and Sobhani, S., 2017. Green synthesis of palladium nanoparticles using Chlorella vulgaris. Materials Letters, 186, 113-115, https://doi.org/10.1016/j.matlet.2016.09.101.

Baker, S., Rakshith, D., Kavitha, K. S., Santosh, P., Kavitha, H. U., Rao, Y. and Satish, S., 2013. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 3(3), 111-117, https://doi.org/10.5681/bi.2013.012.

Rafique, M., Sadaf, I., Rafique, M.S. and Tahir, M.B., 2017. A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1272-1291, https://doi.org/10.1080/21691401.2016.1241792.

Jayaprakash, N., Vijaya, J.J., Kaviyarasu, K., Kombaiah, K., Kennedy, L.J., Ramalingam, R.J., Munusamy, M.A. and Al-Lohedan, H.A., 2017. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 169, 178-185, https://doi.org/10.1016/j.jphotobiol.2017.03.013.

Kong, Y., Paray, B.A., Al-Sadoon, M.K. and Fahad Albeshr, M., 2021. Novel green synthesis, chemical characterization, toxicity, colorectal carcinoma, antioxidant, anti-diabetic, and anticholinergic properties of silver nanoparticles: A chemopharmacological study. Arabian Journal of Chemistry, 14(6), https://doi.org/10.1016/j.arabjc.2021.103193.

Al-zubaidi, L.A., Wsain, S.M. and Ibrahim, S.M., 2021. Evaluate the antifungal and detoxification activity of silver nanoparticles prepared with the Curcuma plant extract against Aflatoxin B1 in broiler feed. IOP Conference Series: Earth and Environmental Science, 779, https://doi.org/10.1088/1755-1315/779/1/012076.

Khan, S.A., Shahid, S., Hanif, S., Almoallim, H.S., Alharbi, S.A. and Sellami, H., 2021. Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. International Journal of Molecular Sciences, 22(2), https://doi.org/10.3390/ijms22020502.

Islam, A., Mandal, C. and Habib, A., 2021. Antibacterial potential of synthesized silver nanoparticles from leaf extract of Moringa oleifera. Journal of Advanced Biotechnology and Experimental Therapeutics, 4(1), 67-73, https://doi.org/10.5455/jabet.2021.d108.

Altaf, M., Manoharadas, S. and Zeyad, M.T., 2021. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microscopy Research and Technique, 84(8), 1638-1648, https://doi.org/10.1002/jemt.23724.

Das, P. and Karankar, V.S., 2019. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. Journal of Microbiological Methods, 167, https://doi.org/10.1016/j.mimet.2019.105766.

Singh, P., Pandit, S., Jers, C., Joshi, A.S., Garnæs, J. and Mijakovic, I., 2021. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Scientific Reports, 11(1), https://doi.org/10.1038/s41598-021-92006-4.

Chandrasekharan, S., Chinnasamy, G. and Bhatnagar, S., 2022. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Scientific Reports, 12(1), https://doi.org/10.1038/s41598-021-04025-w.

Barabadi, H., Mojab, F., Vahidi, H., Marashi, B., Talank, N., Hosseini, O. and Saravanan, M., 2021. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications, 129, https://doi.org/10.1016/j.inoche.2021.108647.

Talank, N., Morad, H., Barabadi, H., Mojab, F., Amidi, S., Kobarfard, F., Mahjoub M.A., Jounaki, K., Mohammadi, N., Salehi, G., Ashrafizadeh, M. and Mostafavi, E., 2022. Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Talanta, 243, https://doi.org/10.1016/j.talanta.2022.123374.

Perveen, K., Husain, F.M., Qais, F.A., Khan, A., Razak, S., Afsar, T. Alam, P., Almajwal, A.M. and Abulmeaty, M.M.A., 2021. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules, 11(2), https://doi.org/10.3390/biom11020197.

Ali, S.G., Ansari, M.A., Alzohairy, M.A., Alomary, M.N., AlYahya, S., Jalal, M., Khan, H.M., Asiri, S.M.M., Ahmad, W., Mahdi, A.A., El-Sherbeeny, A.M. and El-Meligy, M.A., 2020. Biogenic gold nanoparticles as potent antibacterial and antibiofilm nano-antibiotics against Pseudomonas aeruginosa. Antibiotics, 9(3), https://doi.org/10.3390/antibiotics9030100.

Khosravi, M., Mirzaie, A., Kashtali, A.B. and Noorbazargan, H., 2020. Antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of novel synthesized gold nanoparticles coated Anthemis atropatana extract against multidrug- resistant Klebsiella pneumoniae strains. Archives of Microbiology, 202(8), 2105-2115, https://doi.org/10.1007/s00203-020-01930-y.

Barani, M., Masoudi, M., Mashreghi, M., Makhdoumi, A. and Eshghi, H., 2021. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. International Journal of Pharmaceutics, 606, https://doi.org/10.1016/j.ijpharm.2021.120878.

Obeizi, Z., Benbouzid, H., Ouchenane, S., Yılmaz, D., Culha, M. and Bououdina, M., 2020. Biosynthesis of zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Materials Today Communications, 25, https://doi.org/10.1016/j.mtcomm.2020.101553.

Basumatari, M., Devi, R.R., Gupta, M.K., Gupta, S.K., Raul, P.K., Chatterjee, S. and Dwivedi, S.K., 2021. Musa balbisiana Colla pseudostem biowaste mediated zinc oxide nanoparticles: Their antibiofilm and antibacterial potentiality. Current Research in Green and Sustainable Chemistry, 4, https://doi.org/10.1016/j.crgsc.2020.100048.

Doğan, S.Ş. and Kocabaş, A., 2020. Green synthesis of ZnO nanoparticles with Veronica multifida and their antibiofilm activity. Human and Experimental Toxicology, 39(3), 319-327, https://doi.org/10.1177/0960327119888270.

Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R. and Angaiah, S., 2020. Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess and Biosystems Engineering, 43, 1649-1657, https://doi.org/10.1007/s00449-020-02357-x.

Mohamed, A.A., Abu-Elghait, M., Ahmed, N.E. and Salem, S.S., 2021. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biological Trace Element Research, 199(7), 2788-2799, https://doi.org/10.1007/s12011-020-02369-4.

Cherian, T., Ali, K., Saquib, Q., Faisal, M., Wahab, R. and Musarrat, J., 2020. Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents. Biomolecules, 10(2), https://doi.org/10.3390/biom10020169.

Keskin, N.O.S., Vural, O.A. and Abaci, S., 2020. Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. Geomicrobiology Journal, 37(10), 919-928, https://doi.org/10.1080/01490451.2020.1799264.

Miglani, S. and Tani-Ishii, N., 2021. Biosynthesized selenium nanoparticles: Characterization, antimicrobial, and antibiofilm activity against Enterococcus faecalis. PeerJ, 9, https://doi.org/10.7717/peerj.11653.

Dlugaszewska, J. and Dobrucka, R., 2019. Effectiveness of biosynthesized trimetallic Au/Pt/Ag nanoparticles on planktonic and biofilm Enterococcus faecalis and Enterococcus faecium forms. Journal of Cluster Science, 30, 1091-1101, https://doi.org/10.1007/s10876-019-01570-3.

Ismail, A.O., Ajayi, S.O., Alausa, A.O., Ogundile, O.P. and Ademosun, O.T., 2021. Antimicrobial and antibiofilm activities of green synthesized silver nanoparticles for water treatment. Journal of Physics: Conference Series, 1734, https://doi.org/10.1088/1742-6596/1734/1/012043.

Jeyarani, S., Vinita, N.M., Puja, P., Senthamilselvi, S., Devan, U., Velangani, A.J., Biruntha, M., Pugazhendhi, A. and Kumar, P., 2020. Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. Journal of Photochemistry and Photobiology B: Biology, 202, https://doi.org/10.1016/j.jphotobiol.2019.111715.

Jayarambabu, N., Rao, T.V., Kumar, R.R., Akshaykranth, A., Shanker, K. and Suresh, V., 2021. Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated zinc oxide nanoparticles. Materials Today Communications, 26, https://doi.org/10.1016/j.mtcomm.2020.101688.

Bhuiyan, M.R.A. and Mamur, H., 2021. A brief review of the synthesis of ZnO nanoparticles for biomedical applications. Iranian Journal of Materials Science and Engineering, 18(3), https://doi.org/10.22068/ijmse.1995.

Saeki, E.K., Kobayashi, R.K.T. and Nakazato, G., 2020. Quorum sensing system: Target to control the spread of bacterial infections. Microbial Pathogenesis, 142, https://doi.org/10.1016/j.micpath.2020.104068.

Ke, X., Miller, L.C. and Bassler, B.L., 2015. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor. Molecular Microbiology, 95(1), 127-142, https://doi.org/10.1111/mmi.12852.

Husain, F.M., Ahmad, I., Khan, M.S. and Al-Shabib, N.A., 2015. Trigonella foenum-graceum (seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evidence-Based Complementary and Alternative Medicine, 2015, https://doi.org/10.1155/2015/879540.

Hayat, S., Muzammil, S., Shabana, Aslam, B., Siddique, M.H., Saqalein, M. and Nisar, M. A., 2019. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiology, 14(1), 61-72, https://doi.org/10.2217/fmb-2018-0257.

Hernando-Amado, S., Sanz-García, F. and Martínez, J.L., 2019. Antibiotic resistance evolution ss contingent on the quorum-sensing response in Pseudomonas aeruginosa. Molecular Biology and Evolution, 36(10), 2238-2251, https://doi.org/10.1093/molbev/msz144.

Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E. and Jermakow, K., 2020. Prevention of biofilm formation by quorum quenching. Applied Microbiology and Biotechnology, 104, 1871-1881, https://doi.org/10.1007/s00253-020-10349-w.

Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y. and Faure, D., 2016. Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86-116, https://doi.org/10.1093/femsre/fuv038.

Al-Shabib, N.A., Husain, F.M., Ahmad, I., Khan, M.S., Khan, R.A. and Khan, J.M., 2017. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control, 79, 325-332, https://doi.org/10.1016/j.foodcont.2017.03.004.

Ahmad, I. and Husain, F.M., 2014. Bacterial virulence, biofilm and quorum sensing as promising targets for anti-pathogenic drug discovery and the role of natural products. In: J.N. Govil and K.K. Bhutani, eds. Drug Discovery. Vol. 7. Texas: Studium Pres LLC, pp. 1-43.

Qais, F.A., Ahmad, I., Altaf, M., Manoharadas, S., Al-Rayes, B.F., Ali Abuhasil, M.S. and Almaroai, Y. A., 2021. Biofabricated silver nanoparticles exhibit broad-spectrum antibiofilm and antiquorum sensing activity against Gram-negative bacteria. RSC Advances, 11(23), 13700-13710, https://doi.org/10.1039/D1RA00488C.

Kumar, S., Paliya, B.S. and Singh, B.N., 2022. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microbial Pathogenesis, 170, https://doi.org/10.1016/j.micpath.2022.105678.

Qais, F.A., Shafiq, A., Ahmad, I., Husain, F.M., Khan, R.A. and Hassan, I., 2020. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microbial Pathogenesis, 144, https://doi.org/10.1016/j.micpath.2020.104172.

Akther, T., Khan, Mohd.S. and S., H., 2020. Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 8(6), https://doi.org/10.1016/j.jece.2020.104365.

San Diego, K.D.G., Alindayu, J.I.A. and Baculi, R.Q., 2018. Biosynthesis of gold nanoparticles by bacteria from hyperalkaline spring and evaluation of their inhibitory activity against pyocyanin production. Journal of Microbiology, Biotechnology and Food Sciences, 8(2), 781-787, https://doi.org/10.15414/jmbfs.2018.8.2.781-787.

Qais, F.A., Ahmad, I., Altaf, M. and Alotaibi, S.H., 2021. Biofabrication of gold nanoparticles using Capsicum annuum extract and its antiquorum sensing and antibiofilm activity against bacterial pathogens. ACS Omega, 6(25), 16670-16682, https://doi.org/10.1021/acsomega.1c02297.

Samanta, S., Singh, B.R. and Adholeya, A., 2017. Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain em-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against pseudomonas aeruginosa. Indian Journal of Microbiology, 57, 448-460, https://doi.org/10.1007/s12088-017-0662-4.

Al-Shabib, N.A., Husain, F.M., Hassan, I., Khan, M.S., Ahmed, F., Qais, F.A., Oves, M., Rahman, M., Khan, R.A., Khan, A., Hussain, A., Alhazza, I.M., Aman, S., Noor, S., Ebaid, H., Al-Tamimi, J., Khan, J.M., Al-Ghadeer, A.R.M., Khan, M.K.A. and Ahmad, I., 2018. Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus leaves: Broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. Journal of Nanomaterials, 2018, https://doi.org/10.1155/2018/8612158.

Alavi, M., Karimi, N. and Salimikia, I., 2019. Phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. Journal of Industrial and Engineering Chemistry, 72, 457-473, https://doi.org/10.1016/j.jiec.2019.01.002.

Ali, S.G., Ansari, M.A., Alzohairy, M.A., Alomary, M.N., Jalal, M., AlYahya, S., Asiri, S.M.M. and Khan, H.M., 2020. Effect of biosynthesized ZnO nanoparticles on multi-drug resistant Pseudomonas aeruginosa. Antibiotics, 9(5), https://doi.org/10.3390/antibiotics9050260.

Ali, S.G., Ansari, M.A., Jamal, Q.M.S., Khan, H.M., Jalal, M., Ahmad, H. and Mahdi, A.A., 2017. Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study. In Silico Pharmacology, 5, https://doi.org/10.1007/s40203-017-0031-3.

Singh, B.R., Singh, B.N., Singh, A., Khan, W., Naqvi, A.H. and Singh, H.B., 2015. Mycofabricated biosilver nanoparticles interrupt Pseudonomas aeruginosa quorum sensing systems. Scientific Reports, 5(1), https://doi.org/10.1038/srep13719.

Ali, S.G., Ansari, M.A., Jamal, Q.M.S., Almatroudi, A., Alzohairy, M.A., Alomary, M.N. Rehman, S., Mahadevamurthy, M., Jalal, M., Khan, H.M., Adil, S.F., Khan, M. and Al-Warthan, A., 2021. Butea monosperma seed extract mediated biosynthesis of ZnO NPs and their antibacterial, antibiofilm and anti-quorum sensing potentialities. Arabian Journal of Chemistry, 14(4), https://doi.org/10.1016/j.arabjc.2021.103044.