Identification of Repurposable Drugs for Colorectal Cancer Using Drug-Network-Based Classification Models

Main Article Content

Keeratika Thongchaiprasit
Natthakarn Ariyasajjakorn
Nichapa Chatjindarat
Sittichoke Som-am
Thitipong Kawichai

Abstract

Colorectal cancer (CRC) is the second most lethal cancer with more than one million new cases diagnosed worldwide every year. To defuse the increasing CRC threat, more effective and less harmful treatments for CRC patients are urgently needed. Computational drug repurposing, which is an in silico based approach to uncover new indications of approved drugs, is a promising strategy to accelerate the time to market of drugs. However, there are not many computational drug repurposing methods for CRC. In this work, we proposed drug-network-based classification models to identify repurposable drugs for CRC. Initially, four drug networks, the chemical structure network (CSN), the target protein network (TPN), the drug pathway network (PWN), and the drug-drug interaction network (DIN), were formulated. Based on the drug features properly extracted from the networks, we created four multi-layer perceptron (MLP) models. By comparing the performance of the models, the DIN model outperformed the others with the highest accuracy and an F1 score of 96.9%. After predicting the repurposability of over 1,200 non-CRC approved drugs using the DIN model, 306 drugs discovered as potentially repurposable drugs for CRC. In summary, the drug-network-based classification models can efficiently identify repurposable drug candidates for CRC, which would be applicable for efficient therapeutic treatment of CRC.

Article Details

Section
Original Research Articles

References

Marmol, I., Sanchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M.J., 2017. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. International Journal of Molecular Sciences, 18(1), https://doi.org/10.3390/ijms18010197.

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249, https://doi.org/10.3322/caac.21660.

Islam, M.R., Akash, S., Rahman, M.M., Nowrin, F.T., Akter, T., Shohag, S., Rauf, A., Aljohani, A.S.M. and Simal-Gandara, J., 2022. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chemico-Biological Interactions, 368, https://doi.org/10.1016/j.cbi.2022.110170.

Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C.J., Laversanne, M., Vignat, J., Ferlay, J., Murphy, N. and Bray, F., 2023. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut, 72(2), 338-344, https://doi.org/10.1136/gutjnl-2022-327736.

Juneja, M., Kobelt, D., Walther, W., Voss, C., Smith, J., Specker, E., Neuenschwander, M., Gohlke, B.O., Dahlmann, M., Radetzki, S., Preissner, R., von Kries, J.P., Schlag, P.M., and Stein, U., 2017. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLOS Biology, 15(6), https://doi.org/10.1371/journal.pbio.2000784.

Hecht, M., Harrer, T., Buttner, M., Schwegler, M., Erber, S., Fietkau, R. and Distel, L.V., 2013. Cytotoxic effect of efavirenz is selective against cancer cells and associated with the cannabinoid system. AIDS, 27(13), 2031-2040, https://doi.org/10.1097/qad.0b013e3283625444.

Tao, C., Sun, J., Zheng, W.J., Chen, J. and Xu, H., 2015. Colorectal cancer drug target prediction using ontology-based inference and network analysis. Database, 2015, https://doi.org/10.1093/database/bav015.

Irham, L.M., Wong, H.S., Chou, W.H., Adikusuma, W., Mugiyanto, E., Huang, W.C. and Chang, W.C., 2020. Integration of genetic variants and gene network for drug repurposing in colorectal cancer. Pharmacological Research, 161, https://doi.org/10.1016/j.phrs.2020.105203.

Wang, W., Yang, S., Zhang, X. and Li, J., 2014. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics, 30(20), 2923-2930, https://doi.org/10.1093/bioinformatics/btu403.

Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F.-X. and Pan, Y., 2016. Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics, 32(17), 2664-2671, https://doi.org/10.1093/bioinformatics/btw228.

Liu, J., Zuo, Z. and Wu, G., 2020. Link prediction only with interaction data and its application on drug repositioning. IEEE Transactions on NanoBioscience, 19(3), 547-555, https://doi.org/10.1109/TNB.2020.2990291.

Kawichai, T., Suratanee, A. and Plaimas, K., 2021. Meta-path based gene ontology profiles for predicting drug-disease associations. IEEE Access, 9, 41809-41820, https://doi.org/10.1109/ACCESS.2021.3065280.

Yi, H.-C., You, Z.-H., Wang, L., Su, X.-R., Zhou, X. and Jiang, T.-H., 2021. In silico drug repositioning using deep learning and comprehensive similarity measures. BMC Bioinformatics, 22(3), https://doi.org/10.1186/s12859-020-03882-y.

Zhao, B.-W., Su, X.-R., Hu, P.-W., Ma, Y.-P., Zhou, X. and Hu, L., 2022. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Briefings in Bioinformatics, 23(6), https://doi.org/10.1093/bib/bbac384.

Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C. and Wilson, M., 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074-D1082, https://doi.org/10.1093/nar/gkx1037.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J. and Bolton, E.E., 2023. PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373-D1380, https://doi.org/10.1093/nar/gkac956.

Gaulton, A., Hersey, A., Nowotka, M., Bento, A.P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L.J., Cibrian-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magarinos, M.P., Overington, J.P., Papadatos, G., Smit, I. and Leach, A.R., 2017. The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945-D954, https://doi.org/10.1093/nar/gkw1074.

Kanehisa, M. and Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30, https://doi.org/10.1093/nar/28.1.27.

Wishart, D.S., Li, C., Marcu, A., Badran, H., Pon, A., Budinski, Z., Patron, J., Lipton, D., Cao, X., Oler, E., Li, K., Paccoud, M., Hong, C., Guo, A.C., Chan, C., Wei, W. and Ramirez-Gaona, M., 2020. PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Research, 48(D1), D470-D478, https://doi.org/10.1093/nar/gkz861.

Xiong, G., Yang, Z., Yi, J., Wang, N., Wang, L., Zhu, H., Wu, C., Lu, A., Chen, X., Liu, S., Hou, T. and Cao, D., 2022. DDInter: an online drug-drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Research, 50(D1), D1200-D1207, https://doi.org/10.1093/nar/gkab880.

Newman, M., 2010. Networks: An Introduction. New York: Oxford University Press Inc.

Steen, M.V., 2010. Graph Theory and Complex Networks: An Introduction. Enschede: Maarten Van Steen.

Mori, Y., Kuroda, M. and Makino, N., 2016. Multiple correspondence analysis. In: N. Kunitomo and A. Takemura, eds. Nonlinear Principal Component Analysis and Its Applications. Singapore: Springer Singapore, pp. 21-28.

Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P., 2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321-357.

Mao, F., Ni, W., Xu, X., Wang, H., Wang, J., Ji, M. and Li, J., 2016. Chemical structure-related drug-like criteria of global approved drugs. Molecules, 21(1), https://doi.org/10.3390/molecules21010075.

Zhou, B., Wang, R., Wu, P. and Kong, D.X., 2015. Drug repurposing based on drug-drug interaction. Chemical Biology and Drug Design, 85(2), 137-144, https://doi.org/10.1111/cbdd.12378.

Musacchio, L., Cicala, C.M., Salutari, V., Camarda, F., Carbone, M.V., Ghizzoni, V., Giudice, E., Nero, C., Perri, M.T., Ricci, C., Tronconi, F., Scambia, G. and Lorusso, D., 2022. Preclinical and clinical evidence of lurbinectedin in ovarian cancer: current status and future perspectives. Frontiers in Oncology, 12, https://doi.org/10.3389/fonc.2022.831612.

Wu, Q., Chen, X., Wang, J., Sun, P., Weng, M., Chen, W., Sun, Z., Zhu, M. and Miao, C., 2018. Nalmefene attenuates malignant potential in colorectal cancer cell via inhibition of opioid receptor. Acta Biochimica et Biophysica Sinica, 50(2), 156-163, https://doi.org/10.1093/abbs/gmx131.

Takeda, T., Yamamoto, Y., Tsubaki, M., Matsuda, T., Kimura, A., Shimo, N. and Nishida, S., 2022. PI3K/Akt/YAP signaling promotes migration and invasion of DLD-1 colorectal cancer cells. Oncology Letters 23(4), https://doi.org/10.3892/ol.2022.13226.

Song, C., Xu, W., Wu, H., Wang, X., Gong, Q., Liu, C., Liu, J. and Zhou, L., 2020. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway. Cell Death and Disease, 11(10), https://doi.org/10.1038/s41419-020-03136-y.