Influence of Phase Structure of TiO2 Nanoparticles on Resistive Switching Devices

Main Article Content

Benchapol Tunhoo
Direklit Chantarawong
Thutiyaporn Thiwawong
Korakot Onlaor

Abstract

In this work, the electrical memory properties of a bi-stable device based on the structure of aluminum/poly (9-vinyl carbazole) (PVK): TiO2 NPs/indium-tin-oxide (ITO) were reported. The effects of the modified phase structural of titanium dioxide nanoparticles (TiO2 NPs) on the electrical memory characteristics were determined. The TiO2 NPs were annealed at different annealing temperatures. The physical properties of the annealed TiO2 NPs were characterized by transmission electron microscope and X-ray diffraction, which revealed the composition and structure of the anatase and rutile phases. Current-voltage measurements showed that the bi-stable characteristics were affected by the phase structure of the TiO2 NPs. The ON/OFF current ratio of the fabricated device was noted to be approximately 2.06×105 in the case of TiO2 NPs annealed at 500°C. A theoretical model was used to explain the charge injection mechanisms of the device. Moreover, the temperature dependence and retention-time measurements of the device were demonstrated.

Article Details

Section
Original Research Articles

References

Kalaivani, T. and Anilkumar, P., 2018. Role of temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation method. Silicon, 10(4), 1679-1686.

Rath, C., Mohanty, P., Pandey, A.C. and Mishra, N.C., 2009. Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles. Journal of Physics D: Applied Physics, 42(20), https://doi.org/10.1088/0022-3727/42/20/205101.

Li, P., Wang, J., Peng, T., Wang, Y., Liang, J., Pan, D. and Fan, Q., 2019. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U (VI). Applied Surface Science, 483, 670-676.

Song, W., Jiang, Q., Xie, X., Brookfield, A., McInnes, E.J.L., Shearing, P.R., Brett, D.J.L., Xie, F. and Riley, D.J., 2019. Synergistic storage of lithium ions in defective anatase/rutile TiO2 for high-rate batteries. Energy Storage Materials, 22, 441-449.

Tamgadge, R.M. and Shukla, A., 2018. Fluorine-doped anatase for improved supercapacitor electrode. Electrochimica Acta, 289, 342-353.

Ohno, T., Sarukawa, K., Tokieda, K. and Matsumura, M., 2001. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 203(1), 82-86.

Han, E., Vijayarangamuthu, K., Youn, J.-S., Park, Y.-K., Jung, S.-C. and Jeon, K.-J., 2018. Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties. Catalysis Today, 303, 305-312.

Trejo-Tzab, R., Alvarado-Gil, J., Quintana, P. and López, T., 2008. Study of the photoactivation of titania Degussa P25 in ethanol–methanol suspensions using a piezoelectric sensor. Journal of Molecular Catalysis A: Chemical, 281(1-2), 113-118.

Ohtani, B., Prieto-Mahaney, O.O., Li, D. and Abe, R., 2010. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216(2-3), 179-182.

Wang, W.-K., Chen, J.-J., Zhang, X., Huang, Y.-X., Li, W.-W. and Yu, H.-Q., 2016. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Scientific Reports, 6(1), https://doi.org/10.1038/srep.20491.

Zhang, H. and Banfield, J.F., 1999. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. American Mineralogist, 84(4), 528-535.

Illarionov, G.A., Morozova, S.M., Chrishtop, V.V., Einarsrud, M.-A. and Morozov, M.I., 2020. Memristive TiO2: synthesis, technologies, and applications. Frontiers in Chemistry, 8, https://doi.org/10.3389/fchem.2020.00724.

Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S., 2008. The missing memristor found. Nature, 453(7191), 80-83.

Salaoru, I., Li, Q., Khiat, A. and Prodromakis, T., 2014. Coexistence of memory resistance and memory capacitance in TiO2 solid-state devices. Nanoscale Research Letters, 9(1), https://doi.org/10.1186/1556-276X-9-552.

Hu, S., Yue, J., Jiang, C., Tang, X., Huang, X., Du, Z. and Wang, C., 2019. Resistive switching behavior and mechanism in flexible TiO2@ Cf memristor crossbars. Ceramics International, 45(8), 10182-10186.

Nafea, S.F., Dessouki, A.A.S., El-Rabaie, S., Elnaghi, B.E., Ismail, Y. and Mostafa, H., 2019. An accurate model of domain-wall-based spintronic memristor. Integration, 65, 149-162.

Kim, S.G., Han, J.S., Kim, H., Kim, S.Y. and Jang, H.W., 2018. Recent advances in memristive materials for artificial synapses. Advanced Materials Technologies, 3(12), https://doi.org/10.1002/admt.201800457.

Jang J., Park W., Cho K., Song H., and Lee T., 2013. Non-volatile memory characteristics of polyimide layers embedded with ZnO nanowires. Current Applied Physics, 13(7), 1237-1240.

Ukakimaparn, P., Chantarawong, D., Songkeaw, P., Onlaor, K., Thiwawong, T. and Tunhoo, B., 2019. Electrical bistable properties of P-25 TiO2 nanoparticles composited with PVP for memory devices. Journal of Electronic Materials, 48(10), 6792-6796.

Pham, N.K., Vu, N.H., Van Pham, V., Ta, H.K.T., Cao, T.M., Thoai, N. and Tran, V.C., 2018. Comprehensive resistive switching behavior of hybrid polyvinyl alcohol and nanotube nanocomposites identified by combining experimental and density functional theory studies. Journal of Materials Chemistry C, 6(8), 1971-1979.

Wu, W., Jia, M., Zhang, Z., Chen, X., Zhang, Q., Zhang, W., Li, P. and Chen, L., 2019. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicology and Environmental Safety, 175, 243-250.

Pilch, M. and Molak, A., 2014. Resistance switching in rejuvenated NaNbO3: Mn crystals. Phase Transitions, 87(10-11), 1114-1128.

Cho, B., Kim, T.-W., Choe, M., Wang, G., Song, S. and Lee, T., 2009. Unipolar nonvolatile memory devices with composites of poly (9-vinylcarbazole) and titanium dioxide nanoparticles. Organic Electronics, 10(3), 473-477.

Zhang, Y., Zhao, X., Gao, M., He, Z., Chen, J., Wang, S. and Wang, C., 2022. Ternary resistive switching memory behavior of polycarbazole: TiO2 nanoparticles-based device. Thin Solid Films, 754, https://doi.org/10.1016/j.tsf.2022.13921.

Zhang, C., Yu, P.-L., Li, Y. and Li, J.-C., 2020. Polymer/TiO2 nanoparticles interfacial effects on resistive switching under mechanical strain. Organic Electronics, 77, https://doi.org/10.1016/j.orgel.2019.105528.

Ghosh, B. and Pal, A.J., 2009. Conductance switching in TiO2 nanorods is a redox-driven process: evidence from photovoltaic parameters. The Journal of Physical Chemistry C, 113(42), 18391-18395.

Gupta, S.M. and Tripathi, M., 2011. A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657.

Sun, H., Peng, T., Liu, B. and Xian, H., 2015. Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Applied Clay Science, 114, 440-446.

Castrejón-Sánchez, V.H., López, R., Ramón-González, M., Enríquez-Pérez, Á., Camacho-López, M. and Villa-Sánchez, G., 2018. Annealing control on the anatase/rutile ratio of nanostructured titanium dioxide obtained by sol-gel. Crystals, 9(1), https://doi.org/10.3390/cryst9010022.

Hanaor, D.A. and Sorrell C.C., 2011. Review of the anatase to rutile phase transformation. Journal of Materials science, 46(4), 855-874.

Galizia, P., Maizza, G. and Galassi, C., 2016. Heating rate dependence of anatase to rutile transformation. Processing and Application of Ceramics, 10(4), 235-241.

Porter, J.F., Li, Y.-G. and Chan, C.K., 1999. The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. Journal of Materials Science, 34(7), 1523-1531.

Qu, B., Lin, Q., Wan, T., Du, H., Chen, N., Lin, X. and Chu, D., 2017. Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen. Journal of Physics D: Applied Physics, 50(31), https//doi.org/10.1088/1361-6463/aa76d6.

Bory, B.F., Gomes, H.L., Janssen, R.A., de Leeuw, D.M. and Meskers, S.C., 2015. Electrical conduction of LiF interlayers in organic diodes. Journal of Applied Physics, 117(15), https://doi.org/10.1063/1.4917461.

Whitcher, T.J., Talik, N.A., Woon, K., Chanlek, N., Nakajima, H., Saisopa, T. and Songsiriritthigul, P., 2014. Determination of energy levels at the interface between O2 plasma treated ITO/P3HT: PCBM and PEDOT: PSS/P3HT: PCBM using angular-resolved x-ray and ultraviolet photoelectron spectroscopy. Journal of Physics D: Applied Physics, 47(5), https://doi.org/10.1088/0022-3727/47/5/055109.

Son, D.I., Park, D.H., Kim, J.B., Choi, J.-W., Kim, T.W., Angadi, B., Yi, Y. and Choi, W.K., 2011. Bistable organic memory device with gold nanoparticles embedded in a conducting poly (N-vinylcarbazole) colloids hybrid. The Journal of Physical Chemistry C, 115(5), 2341-2348.

Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M., Palgrave, R.G. and Parkin, I.P., 2013. Band alignment of rutile and anatase TiO2. Nature materials, 12(9), 798-801.

Jyoti, Krylov, P., Berestennikov, A., Aleshin, A., Komolov, A., Shcherbakov, I., Petrov, V. and Trapeznikova, I., 2015. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide. Physics of the Solid State, 57(8), 1678-1684.

Jyoti, Kaur, R., Singh, S., Sharma, J. and Tripathi, S.K., 2019. Effect of TiO2 Concentration on the Non-Volatile Memory Behavior of TiO2-PVA Polymer Nanocomposites. Journal of Electronic Materials, 48(9), 5995-6002.

Li, J.-C., Sui, W. and Li, Y., 2018. Interfacial effects on resistive switching of vacuum spray deposited polymer thin films embedded with TiO2 nanoparticles under bending strain. Organic Electronics, 61, 170-176.

Li, J.-C., Zhang, C. and Shao, S.-J., 2018. Effect of bottom electrode materials on resistive switching of flexible poly (N-vinylcarbazole) film embedded with TiO2 nanoparticles. Thin Solid Films, 664, 136-142.