Antagonıst Test of Endophyte Fungi Isolated from Leaves of Mangrove (Rhizophora sp.) as Antıfungi against Sanca Snakes (Malayopython sp.) Disease

Main Article Content

Dalia Sukmawati
Atin Supiyani
Rahmah Khairunnisa Qonita
Clarita Salsabila
Rila Nazila Herlambang
Riska Ariska
Andrian Bayu Sentosa
Desty Saszieta
Proborini Indah Nursari
Almira M Priskaningrum
Famira Ichsanty
Sheyla Annisyah
Hesham Ali El Enshasy
Daniel Joe Dailin
Skyler
Low Hock Heng
Raden Haryo Bimo Setiarto
Sulistiani
Dandy Yusuf
Lutfi Anshory
Ahmad Fathoni

Abstract

Mangrove plants have many benefits, such as the ability to produce bioactive compounds. Bioactive compounds can be produced by endophytic fungi found on mangrove leaves. Endophytic fungi are also known to produce secondary metabolites that are the same as their hosts produce for plant defence. Endophytic fungi in mangrove leaves (Rhizophora sp.) have antagonistic potential against pathogenic fungi. One of the pathogenic fungi was shown to cause a skin disease in pythons (Malayopython sp.) through the transmission via tick saliva. Pathogenic fungi found in tick saliva were Fusarium oxysporum and Aspergillus niger. This study examined the potential of endophytic fungi in mangrove leaves (Rhizophora sp.) as anti-fungal pathogens in pythons. Endophytic fungi were isolated from mangrove leaves at the Angke Kapuk Mangrove Nature Park, Pantai Indah Kapuk, DKI Jakarta, and an antagonist test of endophytic fungi against pathogenic fungi was performed using the dual culture assay method. This study obtained 16 isolates, and nine isolates had antagonistic potential. These nine isolates produced a clear zone in the antagonist test. The inhibition zone indicates endophytic fungi inhibit the growth of pathogenic fungi.

Article Details

Section
Original Research Articles

References

Syah, A.F., 2020. Penanaman mangrove sebagai upaya pencegahan abrasi di desa socah. Jurnal Ilmiah Pangabdhi, 6(1), 13-16, https://doi.org/10.21107/pangabdhi.v6i1.6909. (in Indonesian)

Destiana, D., Azahra, S.D. and Lesatariningsih, S.P., 2023. The utilization of Acanthus ilicifolius leaves, commonly known as jeruju leaves, as crispy and beneficial crackers, contributes to the improvement of the economy. Jurnal Masyarakat Mandiri, 7(1), 886-896, https://doi.org/10.31764/jmm.v7i1.12815. (in Indonesian)

Poncowati, S., Soenardjo, N., Taufiq-spj, N. and Sibero, M.T., 2022. Profile of secondary metabolic compounds extract from mangrove leaf Lumnitzera racemosa from teluk awur, jepara. Journal of Marine Research, 11(4), 794-804, https://doi.org/10.14710/jmr.v11i4.34325. (in Indonesian)

Astriani, A.D. and Dwijayanti, E., 2022. Uji aktivitas antibakteri mikroba endofit dari buah merah (Pandanus conoideus Lam.) terhadap bakteri patogen. Journal Syifa Sciences and Clinical Research, 4(2), 371-377, https://doi.org/10.37311/jsscr.v4i2.14369. (in Indonesian)

Tumangger, B.S., Nadilla, F., Baiduri, N., Fitriani and Mardina, V., 2018. In vitro screening of endophytic fungi associated with mangroveas biofertilizer on the growth of black rice (Oryza sativa L. "Cempo Ireng"). IOP Conference Series: Materials Science and Engineering, 420, https://doi.org/10.1088/1757-899X/420/1/012080.

Pasappa, N., Pelealu, J.J. and Tangapo, A.M., 2022. Isolation and antibacterial test of endophytic fungi from mangrove plant Soneratia alba on the coast of Manado city. Jurnal Pharmacon, 11(2), 1430-1437. (in Indonesian).

Umashankari, J., Inbakandan, D., Ajithkumar, T.T. and Balasubramanian, T., 2012. Mangrove plant, Rhizohora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquatic Biosystems, 8(11), https://doi.org/10.1186/2046-9063-8-11.

Jia, M., Chen, L., Xin, H.-L., Zheng, C.-J., Rahman, K., Han, T., and Qin, L.-P., 2016. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology, (7), https://doi.org/10.3389/fmicb.2016.00906.

Hidayat, I., Dewi, L.C. and Sukmawati, D., 2019. Antagonistic activity of three Aspergillus isolates against Fusarium wilt of banana. Journal of Microbial Systematics and Biotechnology, 1(1), 1-10, https://doi.org/10.37604/jmsb.v1i1.16.

Gomathi, S. and Ambikapathy, V., 2011. Antagonistic activity of fungi against Pyhtium debaryanum (Hesse) isolated from chilli field soil. Advances in Applied Science Research, 2(4), 291-297.

Chung, W.C., Chen, L.W., Huang, J.H., Huang, H.C. and Chung, W.H., 2011. A new ‘forma specialis’ of Fusarium solania using leaf yellowing of phaleonopsis. Plant Pathology, 60(2), 244-252, https://doi/org/10/1111/j.1365-3059.2010.02376.x.

Ibrahim, M., Kaushik, N., Suwemino, A., Chhipa, H., Koekemoer, T., van de Venter, M. and Odukoya, O.A., 2017. Antifungal and antiproliferative activities of endophytic fungi isolated from the leaves of Markhamia tomentosa. Parmaceutical Biology, 55(1), 590-595, https://doi/org/10.1080/13880209.2016.1263671.

Zivkovic, S., Stojanovic, S., Ivanovic, Z., Gavrilovic, V., Popovic, T. and Balaz, J., 2010. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gleoeosporioides. Archives of Biological Sciences, Belgrade, 62(3), 611-623, https://doi.org/10.2298/ABS1003611Z.

Gao, F.-K., Dai, C.-C. and Liu, X.-Z., 2010. Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 4(13), 1346-1351, https://doi.org/10.5897/AJMR.9000480.

Aparna, J.R., Naglot, A., Sharma, G.D., Gogoi, H.K., and Veer, V., 2014. In vitro evaluation of antagonism of endophytic colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian Journal of Microbiology Research, 54(3), 302-309, https://doi.org/10.1007/s12088-014-0458-8.

Dellanerra, D., Risandi, A., Sunari, A., Sukmawati, D., Husna, S.N.A. and El-Enshasy, H.A., 2019. Screening and characterization of amylolitic mold originated from ghost crab (Ocypode sp.) in Cidaon, Ujung Kulon National Park, Indonesia. AIP Conference Proceedings, 2120, https://doi.org/10.1063/1.5115725.

Ilmi, M., Putri, L.K., Muhammad, A.A.K., Cholishoh, A. and Ardiansyah, S.A., 2019. Use of mung bean sprout (tauge) as alternative fungal growth medium. Journal of Physics: Conference Series, 1241, https://doi.org/10.1088/1742-6596/1241/1/012015.

Arnold, A.E., Maynard, Z. and Gilbert, G.S., 2001. Fungal endophytes in dicotyledonous neotropical tress: patterns of abundance and diversity. Mycological Research, 105, 1502-1507, https://doi.org/10.1017/S0953756201004956.

Sukmawati, D., Setyaningsih, A., Handayani, K.T., Rahayu, S., Rustam, Y., Moersilah, M. and Husna, S.N.A., 2018. Isolation and characterization of aflatoxigenic Aspergillus spp. from maize of livestock feed from Bogor. IOP Conference Series: Materials Science and Engineering, 434, https://doi.org/10.1088/1757-899X/434/1/012105.

Sukmawati, D., Saidah, N., Handayani, K.T. and Rahayu, S., 2018. The characteristic of fungi contaminating chicken feed in Tegal, Bogor, West Java. Asian Journal of Agricultural and Biology, 6(4), 472-480.

Sukmawati, D., Arman, Z., Hasanah, R., Balqis, M., Setiawan, A., Tafrijiyyah, F., Sari, R., Supiyani, A., Prihantini, N.B., Husna, S.N.A., Enshasy, H.A.E. and Dailin, D.J., 2021. Application of yeasts isolated from fermented cocoa beans for biocontrol of pathogenic mold in chocolate fruit. Journal of Physics: Conference Series, 1869(1), https://doi.org/10.1088/1742-6596/1869/1/012042.

Sarkar, S., Dey, A., Kumar, V., Batiha, G.E.-S., El-Esawi, M.A., Tomczyk, M. and Ray, P., 2021. Fungal endophyte : an interactive endosymbiont with the capability of modulating host physiology in myriad ways. Frontiers in Plant Science, 12, https://doi.org/10.3389/fpls.2021.701800. 88

Crous, P.W., Verkley, G.J.M., Groenewald, J.Z. and Samson, R.A., 2009. Fungal Biodiversity. CBS Laboratory Manual Series. Utrecht: Westerdijk Fungal Biodiversity Institute.

Lelana, N.E., Anggraeni, I. and Mindawati, N., 2015. Uji antagonis Aspergillus sp. dan Trichoderma spp. terhadap Fusarium sp., penyebab penyakit rebah kecambah pada sengon. Jurnal Penelitian Hutan Tanaman, 12(1), 23-28, https://doi.org/10.20886/jpht.2015.12.1.23-28. (in Indonesian)

Daami-Remadi, M., Jabnoun-Khiareddine, H., Ayed, F., Hibar, K., Znaidi, I.E.A. and Mahjoub, M.E., 2006. In vitro and in vivo evaluation of individually compost fungi for potato Fusarium dry rot biocontrol. Journal of Biological Sciences, 6(3), 572-580, https://doi.org/10.3923/jbs.2006.572.580.

Santamarina, P.M., Josefa, R., Reyes, L. and Vicente, S., 2002. Antagonistic activity of Penicillium oxalicum Corrie and Thom, Penicillium ducumbens Thom and Trichoderma harzianum Rifai isolates against fungi, bacteria, and insects in vitro. Revista Iberoamericana de Micología, 19(2), 99-103.

Patkowska, E., Błażewicz-Woźniak, M. and Konopiński, M., 2015. Antagonistic activity of selected fungi occuring in the soil after root chicory cultivation. Plant, Soil and Environment, 61(2), 55-59, https://doi.org/10.17221/920/2014-PSE.

Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., L'Haridon, F. and Alabouvette, C., 2006. Colonization of tomato root by pathgenic and nonpathogenic Fusarium oxysporum strains inoculated together and separetely into the soil. Applied and Environmental Microbiology, 72(2), 1523-1531, https://doi.org/10.1128%2FAEM.72.2.1523-1531.2006.

Rehman, S., Shawl, A.S., Kour, A., Andrabi, R., Sudan, P., Sultan, P., Verma, V. and Qazi, G.N., 2008. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Applied Biochemistry and Microbiology, 44(2), 203-209, https://doi.org/10.1134/S0003683808020130.