Synthesis and Anti-Plant Pathogenic Fungal Activity of Flavokawain-Derived Flavones and Related Flavones Against Rhizoctonia solani

Main Article Content

Panuwat Onnom
Warot Chotpatiwetchkul
Jatuporn Meesin
Pilunthana Thapanapongworakul
Chokchai Kittiwongwattana
Nawasit Chotsaeng

Abstract

Flavones are organic compounds in the flavonoid family that have a diverse range of biological functions. In this research, many flavones with various substituents were designed and synthesized from flavokawains A, B, and C, and their chalcone derivatives via an iodine-catalyzed oxidative cyclization process. All synthetic flavones were investigated for antifungal activities against Rhizoctonia solani, a plant pathogenic fungus. At 400 µg, most of the substances did not inhibit the tested species and R. solani growth was inhibited by only o-bromoflavone (40) by 74.88±0.91%. This indicated that the detrimental effect of flavones depends on the type and position of substituent, with the ortho bromo group showing the most promise. The molecular docking study on the succinate dehydrogenase (SDH) enzyme revealed that the bromophenyl moiety (ring B) is a key molecular substructure of the flavone fungicide. The findings of this study will be used to develop novel plant pathogenic fungicides.

Article Details

Section
Original Research Articles

References

He, D.-C., Zhan, J.-S. and Xie, L.-H., 2016. Problems, challenges and future of plant disease management: from an ecological point of view. Journal of Integrative Agriculture, 15(4), 705-715, https://doi.org/10.1016/S2095-3119(15)61300-4.

Singh, V.K., Singh, R., Kumar, A. and Bhadouria, R., 2021. Current status of plant diseases and food security. In: A. Kumar and S. Droby, eds. Food Security and Plant Disease Management. Cambridge: Woodhead Publishing, pp. 19-35.

Karar, M.E., Alsunaydi, F., Albusaymi, S. and Alotaibi, S., 2021. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60(5), 4423-4432, https://doi.org/10.1016/j.aej.2021.03.009.

Golhani, K., Balasundram, S.K., Vadamalai, G. and Pradhan, B., 2018. A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5(3), 354-371, https://doi.org/10.1016/j.inpa.2018.05.002.

Brent, K.J. and Hollomon, D.W., 1995. Fungicide Resistance in Crop Pathogens: How Can It be Managed? Brussels: GIFAP.

Hollomon, D.W., 2015. Fungicide resistance: 40 years on and still a major problem. In: H. Ishii, D.W. Hollomon, eds. Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management. Tokyo: Springer, pp. 3-11.

Hirooka, T. and Ishii, H., 2013. Chemical control of plant diseases. Journal of General Plant Pathology, 79(6), 390-401, https://doi.org/10.1007/s10327-013-0470-6.

Jiménez-Reyes, M.F., Carrasco, H., Olea, A.F. and Silva-Moreno, E., 2019. Natural compounds: A sustainable alternative to the phytopathogens control. Journal of the Chilean Chemical Society, 64(2), 4459-4465, http://dx.doi.org/10.4067/S0717-97072019000204459.

Yang, C., Li, T., Jiang, L., Zhi, X. and Cao, H., 2020. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents. Bioorganic Chemistry, 94, https://doi.org/10.1016/j.bioorg.2019.103469.

Fan, L., Luo, Z., Yang, C., Guo, B., Miao, J., Chen, Y., Tang, L. and Li, Y., 2022. Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi. Molecular Diversity, 26(2), 981-992, https://doi.org/10.1007/s11030-021-10213-7.

Guo, Y., Chen, J., Ren, D., Du, B., Wu, L., Zhang, Y., Wang, Z. and Qian, S., 2021. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection. Bioorganic and Medicinal Chemistry, 40, https://doi.org/10.1016/j.bmc.2021.116184.

Mostahar, S., Alam, S. and Islam, A., 2006. Cytotoxic and antimicrobial activities of some synthetic flavones. Indian Journal of Chemistry, 45(B), 1478-1486.

Wu, W.-N., Jiang, Y.-M., Fei, Q., Du, H.-T. and Yang, M.-F., 2020. Synthesis and antifungal activity of novel 1,2,4-triazole derivatives containing an amide moiety. Journal of Heterocyclic Chemistry, 57(3), 1379-1386, https://doi.org/10.1002/jhet.3874.

Yin, X.-D., Sun, Y., Lawoe, R. K., Yang, G.-Z., Liu, Y.-Q., Shang, X.-F., Liu, H., Yang, Y.-D., Zhu, J.-K. and Huang, X.-L., 2019. Synthesis and anti-phytopathogenic activity of 8-hydroxyquinoline derivatives. RSC Advances, 9(52), 30087-30099. https://doi.org/10.1039/C9RA05712A.

Panche, A.N., Diwan, A.D. and Chandra, S.R., 2016. Flavonoids: an overview. Journal of Nutritional Science, 5, https://doi.org/10.1017/jns.2016.41.

Farhadi, F., Khameneh, B., Iranshahi, M. and Iranshahy, M., 2019. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytotherapy Research, 33(1), 13-40, https://doi.org/10.1002/ptr.6208.

Kopustinskiene, D.M., Jakstas, V., Savickas, A. and Bernatoniene, J., 2020. Flavonoids as anticancer agents. Nutrients, 12(2), https://doi.org/10.3390/nu12020457.

Aboody, M.S.A. and Mickymaray, S., 2020. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics, 9(2), https://doi.org/10.3390/antibiotics9020045.

Badshah, S.L., Faisal, S., Muhammad, A., Poulson, B.G., Emwas, A.H. and Jaremko, M., 2021. Antiviral activities of flavonoids. Biomedicine and Pharmacotherapy, 140, https://doi.org/10.1016/j.biopha.2021.111596.

Alam, S. and Mostahar, S., 2005. Studies of antimicrobial activity of two synthetic 2′, 4′, 6′-trioxygenated flavones. Journal of Applied Sciences, 5(2), 327-333. https://doi.org/10.3923/jas.2005.327.333.

Alam, S., 2004. Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one. Journal of Chemical Sciences, 116,(6), 325-331. https://doi.org/10.1007/BF02711433.

Liu, T., Liao, H., Yuan, K. and Zhang, Y., 2012. A new flavone from the Melicope patulinervia (Merr. & Chun) Huang. Journal of Chemical Research, 36(1), 31-33, https://doi.org/10.3184/174751912X13252506428852.

Chen, W.-Q., Song, Z.-J. and Xu, H.-H., 2012. A new antifungal and cytotoxic C-methylated flavone glycoside from Picea neoveitchii. Bioorganic and Medicinal Chemistry Letters, 22(18), 5819-5822, https://doi.org/10.1016/j.bmcl.2012.07.089.

Bagla, V.P., McGaw, L.J., Elgorashi, E.E. and Eloff, J.N., 2014. Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complementary and Alternative Medicine, 14(1), https://doi.org/10.1186/1472-6882-14-383.

Chen, J., Zhang, X., Li, W., Li, T., Ding, W. and Li, C., 2019. A new flavone from Flos sophorae immaturus through microbial transformation by Nigrospora sphaerica ZMT05. Chemistry of Natural Compounds, 55(6), 1025-1027, https://doi.org/10.1007/s10600-019-02885-3.

Liberto, M.G.D., Stegmayer, M.I., Svetaz, L.A. and Derita, M.G., 2019. Evaluation of Argentinean medicinal plants and isolation of their bioactive compounds as an alternative for the control of postharvest fruits phytopathogenic fungi. Revista Brasileira de Farmacognosia, 29(5), 686-688, https://doi.org/10.1016/j.bjp.2019.05.007.

Mishra, P.K., Sarma, B.K., Singhai, P.K. and Singh, U.P., 2007. Antifungal activity of 2-hydroxy 4,4'6'trimethoxy chalcone. Mycobiology, 35(2), 72-75, https://doi.org/10.4489/MYCO.2007.35.2.072.

Ajayi-Oyetunde, O.O. and Bradley, C.A., 2018. Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathology, 67(1), 3-17, https://doi.org/10.1111/ppa.12733.

Li, S., Li, D., Xiao, T., Zhang, S., Song, Z. and Ma, H., 2016. Design, synthesis, fungicidal activity, and unexpected docking model of the first chiral boscalid analogues containing oxazolines. Journal of Agricultural and Food Chemistry, 64(46), 8927-8934, https://doi.org/10.1021/acs.jafc.6b03464.

Xiong, L., Shen, Y.-Q., Jiang, L.-N., Zhu, X.-L., Yang, W.-C., Huang, W. and Yang, G.-F., 2015. Succinate dehydrogenase: An ideal target for fungicide discovery. In: P. Maienfisch and T.M. Stevenson, eds. Discovery and Synthesis of Crop Protection Products, Washington D.C.: American Chemical Society, pp. 175-194.

Yang, D., Zhao, B., Fan, Z., Yu, B., Zhang, N., Li, Z., Zhu, Y., Zhou, J., Kalinina, T.A. and Glukhareva, T.V., 2019. Synthesis and biological activity of novel succinate dehydrogenase inhibitor derivatives as potent fungicide candidates. Journal of Agricultural and Food Chemistry, 67(47), 13185-13194, https://doi.org/10.1021/acs.jafc.9b05751.

Charoenying, P., Teerarak, M. and Laosinwattana, C., 2010. An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Scientia Horticulturae, 125(3), 411-416, https://doi.org/10.1016/j.scienta.2010.04.045.

Chotsaeng, N., Laosinwattana, C. and Charoenying, P., 2019. Herbicidal activity of flavokawains and related trans-chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS Omega, 4(24), 20748-20755, https://doi.org/10.1021/acsomega.9b03144.

Boeck, P., Falcão, C.A.B., Leal, P.C., Yunes, R.A., Filho, V.C., Torres-Santos, E.C. and Rossi-Bergmann, B., 2006. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorganic and Medicinal Chemistry, 14(5), 1538-1545, https://doi.org/10.1016/j.bmc.2005.10.005.

Detsi, A., Majdalani, M., Kontogiorgis, C.A., Hadjipavlou-Litina, D. and Kefalas, P., 2009. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorganic and Medicinal Chemistry,17(23), 8073-8085, https://doi.org/10.1016/j.bmc.2009.10.002.

Bakar, A.A., Akhtar, M.N., Ali, N.M., Yeap, S.K., Quah, C.K., Loh, W.-S., Alitheen, N.B., Zareen, S., Ul-Haq, Z. and Shah, S.A.A., 2018. Design, synthesis and docking studies of flavokawain B type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 23(3), https://doi.org/10.3390/molecules23030616.

Sukumaran, S.D., Chee, C.F., Viswanathan, G., Buckle, M.J.C., Othman, R., Rahman, N.A. and Chung, L.Y., 2016. Synthesis, biological evaluation and molecular modelling of 2′-hydroxychalcones as acetylcholinesterase inhibitors. Molecules, 21(7), https://doi.org/10.3390/molecules21070955.

Cabrera, M., Simoens, M., Falchi, G., Lavaggi, M.L., Piro, O.E., Castellano, E.E., Vidal, A., Azqueta, A., Monge, A., de Ceráin, A.L., Sagrera, G., Seoane, G., Cerecetto, H. and González, M., 2007. Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure–activity relationships. Bioorganic and Medicinal Chemistry, 15(10), 3356-3367, https://doi.org/10.1016/j.bmc.2007.03.031.

Häberlein, H. and Tschiersch, K.-P., 1994. Triterpenoids and flavonoids from Leptospermum scoparium. Phytochemistry, 35(3), 765-768, https://doi.org/10.1016/S0031-9422(00)90601-0.

Ravishankar, D., Watson, K.A., Greco, F. and Osborn, H.M.I., 2016. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RSC Advances, 6(69), 64544-64556. https://doi.org/10.1039/C6RA11041J.

Prickett, T.C.R. and Walker, J.R.L., 1989. Flavone compounds in male and female asparagus (Asparagus officinalis) plants. Journal of the Science of Food and Agriculture, 47(1), 53-60, https://doi.org/10.1002/jsfa.2740470107.

Tran, C.-L., Tri, M.D., Tien-Trung, N., Phan, N.-M., Phan, C.-T.D., Tran, T.-N., Do, T.-H.,Tran, N.-M.-A., Tran, T.-N.-M. and Duong, T.-H., 2022. Nervione, a new benzofuran derivative from Nervilia concolor. Natural Product Research, 36(20), 5148-5154, https://doi.org/10.1080/14786419.2021.1920585.

Nguyen, C.C., Nguyen, T.Q.C., Kanaori, K., Binh, T.D., Vang, L.V. and Kamei, K., 2021. Isolation and identification of antibacterial and antifungal compounds from Praxelis clematidea R. M. King & H. Robinson as an effective potential treatment against rice pathogens. Agronomy, 11(11), https://doi.org/10.3390/agronomy11112366.

Nuwong, W. and Kittiwongwattana, C., 2022. Correlation of antifungal activities and nonribosomal peptide synthetase gene expression of Bacillus siamensis 1021. Chiang Mai Journal of Science, 49(2), 272-283, https://doi.org/10.12982/CMJS.2022.041.

Sun, P., Cui, J., Jia, X. and Wang, W., 2017. Isolation and characterization of Bacillus amyloliquefaciens L-1 for biocontrol of pear ring rot. Horticultural Plant Journal, 3(5), 183-189, https://doi.org/10.1016/j.hpj.2017.10.004.

RCSB Protein Data Bank, 2005. 2FBW. [online] Available at: https://www.rcsb.org/structure/2FBW.

BIOVIA Discovery Studio, 2017. Dassault Systèmes. San Diego: Accelrys Inc.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, L., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B. and Fox, D.J., 2016. Gaussian 16; Revision C.01. Wallingford CT.: Gaussian, Inc.

Schrödinger Release 2020-1: Glide, LLC, New York, NY, 2020 (Trial License)

Bassoli, A., Borgonovo, G., Caimi, S., Farina, G. and Moretti, M., 2008. Oleoylsalicylate derivatives: Synthesis and antifungal activity. The Open Natural Products Journal, 8(1), 14-19, https://doi.org/10.2174/1874848100801010014.

Li, Y., Liu, S., Qin, Y., Xing, R., Chen, X., Li, K. and Li, P., 2016. Synthesis of novel pyrimethanil grafted chitosan derivatives with enhanced antifungal activity. BioMed Research International, 2016, https://doi.org/10.1155/2016/8196960.

Chauhan, K.R., Le, T.C., Chintakunta, P.K. and Lakshman, D.K., 2017. Phyto-fungicides: Structure activity relationships of the thymol derivatives against Rhizoctonia solani. Journal of Agricultural Chemistry and Environment, 6(4), 175-185, https://doi.org/ 10.4236/jacen.2017.64012.

You, X., Wakana, D., Ishikawa, K., Hosoe, T. and Tojo, M., 2019. Antifungal activity of compounds isolated from bamboo vermicompost against Rhizoctonia solani AG1-IB. Advances in Microbiology, 9(12), 957, https://doi.org/10.4236/aim.2019.912061.

Upadhyay, R.K., Saini, K.K., Deswal, N., Singh, T., Tripathi, K.P., Kaushik, P., Shakil, N.A., Bharti, A.C. and Kumar, R., 2022. Synthesis of benzothiazole-appended bis-triazole-based structural isomers with promising antifungal activity against Rhizoctonia solani. RSC Advances, 12(37), 24412-24426, https://doi.org/10.1039/D2RA04465J.

Zhou, Q., Tang, X., Chen, S., Zhan, W., Hu, D., Zhou, R., Sun, N., Wu, Y. and Xue, W., 2022. Design, synthesis, and antifungal activity of novel chalcone derivatives containing a piperazine fragment. Journal of Agricultural and Food Chemistry, 70(4), 1029-1036, https://doi.org/10.1021/acs.jafc.1c05933.

Song, X., Jiang, Z., Li, J., Lu, X., Han, Q., Zhu, K., Li, H., Ling, Y. and Duan, H., 2022. Synthesis, antifungal activity, and molecular dynamics study of novel geranyl aromatic sulfonamide compounds as potential complex III inhibitors. Medicinal Chemistry Research, 31(4), 628-642, https://doi.org/10.1007/s00044-022-02864-4.

Chen, M., Duan, W.-G., Lin, G.-S., Fan, Z.-T. and Wang, X., 2021. Synthesis, antifungal activity, and 3D-QSAR study of novel nopol-derived 1,3,4-thiadiazole-thiourea compounds. Molecules, 26(6), https://doi.org/10.3390/molecules26061708.

Yuan, H., Zhang, W., Liu, H., Zhang, Y., Zhang, C., Guo, Z., Gao, Y., Lei, P. and Liu, X., 2022. Synthesis and antifungal activity of coumarin oxime esters. Chinese Journal of Pesticide Science, 24(5), 1189-1195, https://doi.org/10.16801/j.issn.1008-7303.2022.0078.

Yan, Z., Liu, S., Qiu, L., Chen, Y., Li, A., Wang, Z., Chang, T., Niu, X. and Jin, F., 2022. Design, synthesis, and antifungal activity of nicotinamide derivatives containing diphenylamine moieties. Journal of Chemical Sciences, 134(3), https://doi.org/10.1007/s12039-022-02081-x.