Phytotoxicity Stress Induced by Allelochemicals from Foliar Spray of Sida cordifolia Methanol Leaf Extract on Ageratum conyzoides and Oryza sativa
Main Article Content
Abstract
Allelochemicals are key inhibitors that induce chemical stress in plants. Their mechanisms as agents of oxidative stress are not well understood. A field study was conducted to evaluate herbicidal potential of Sida cordifolia methanol leaf extract (SCLE) on Ageratum conyzoides and Oryza sativa (weedy rice). SCLE concentrations of 0, 3, 6 and 9 g L-1 were prepared and sprayed twice at 7 days interval. The results showed that the SCLE significantly (p<0.05) affected growth attributes, chlorophyll pigments, and proline, and catalase, superoxide dismutase and peroxidase enzyme activities in a concentration-dependent pattern. It was found that high concentrations of SCLE induced greater phytotoxicity against A. conyzoides compared to O. sativa. SCLE spraying stimulated production of reactive oxygen species, boosting their ability to cause damage and inhibit growth. The allelochemicals in the extract stimulated an increased in the level of proline, which is an indicator of oxidative stress. Understanding the physiological and biochemical responses to Sida extract can improve our knowledge on allelochemical target sites and help us to explicate the mechanisms of action of such compounds.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abu-Romman, S., Shatnawi, M., & Shibli, R. (2010). Allelopathic effects of spurge (Euphorbia hierosolymitana) on wheat (Triticum durum). American-Eurasian Journal of Agriculture and Environmental Sciences, 7(3), 298-302.
Aggarwal, M., Sharma, S., Kaur, N., Pathania, D., Bhandhari, K., Kaushal, N., Kaur, R., Singh, K., Srivastava, A., & Nayyar, H. (2011). Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biological Trace Element Research, 140, 354-367. https://doi.org/10.1007/s12011-010-8699-9
Ahmed, C. B., Magdich, S., Rouina, B. B., Sensoy, S., Boukhris, M., & Abdullah, F. B. (2011). Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids, 40, 565-573. https://doi.org/10.1007/s00726-010-0677-1
Ahmed, H., Juraimi, A. S., Hamdani, M. S. A., Rafii, Y. M., Aslani, F., & Omar, D. (2017). Comparative phytotoxic effects of aerial and root aqueous extracts of Sida cordifolia L. on germination and seedling vigour performance of lettuce, tomato and carrot. Bangladesh Journal of Botany, 46(1), 323-328.
Ahmed, H., Juraimi, A. S., Swamy, M. K., Ahmad-Hamdani, M. S., Omar, D., Rafii, M. Y., Sinnaih, U. R., & Akhtar, M. S. (2018). Botany, chemistry and pharmaceutical significance of Sida cordifolia: A traditional medicinal plant. In M. S. Akhtar & M. K. Swamy (eds.). Anticancer Plants: Properties and Application (pp. 517-537). Springer Nature.
Ahmed, M. A. E. G., & Hamid, M. E. S. (2015). Responses of Cucurbita pepo L. mediated by Portulaca oleracea L. Allelopathy. Fresenius Environmental Bulletin, 24, 386-393.
Alimoradi, L., Azizi, G., Jahani, M., Siah-Marguee, A., & Keshavarzi, A. (2008). Allelopathy as an alternative method for weed control in saffron fields: A suitable approach to sustainable agriculture. In Congress on competition for resources in a changing world: new drive for rural development (pp. 127-145). Hohenheim.
Al-Taisan, W. A. (2014). Allelopathic effects of Heliotropium bacciferum leaf and roots on Oryza sativa and Teucrium polium. Life Science Journal, 11(8), 41- 50.
Ambika, S. K. (2013). Multifaceted attributes of allelochemicals and mechanism of allelopathy. In Z. A. Cheema., M. Farooq & A. Wahid (eds.). Allelopathy: Current trends and future applications (pp. 389-405). Springer.
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. A., & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science, 301(5638), 1377-1380. https://doi.org/10.1126/science.1083245
Batoul, S., Juraimi, A. S., Abdullah, S. A. S., Rafii, M. Y., Anuar, A. R., & Anwar, M. P. (2014). Effect of cover crop on weed community and oil palm yield. International Journal of Agriculture and Biology, 16(1), 23-31.
Cheema, Z. A., Farooq, M., & Khaliq, A. (2013). Application of allelopathy in crop production: Success story from Pakistan. In Z.A. Cheema, M. Farooq & A. Wahid, (eds.). Allelopathy: Current Trends and Future Applications (pp. 113-143). Springer-Verlag
Colom, M. R., & Vazzana, C. (2003). Photosynthesis and PSII functionality of drought resistant and drought-sensitive weeping love grass plants. Environmental and Experimental Botany, 49(2), 135-144. https://doi.org/10.1016/S0098-8472(02)00065-5
da Silva, R. F., Bressan, R. T., Zilli, B. M., Pilatti, M. A., de Souza, S. N. M., & Santos, R. F. (2016). Allelopathic effect of aqueous extract of fresh leaf castor beans (Ricinus communis L.) applied to the beginning stage of soy (Glycine max L.) and safflower (Carthamus tinctorius L.). African Journal of Biotechnology, 15(49), 2787-2793.
Das, C. R., Mondal, N. K., Aditya, P., Datta, J. K., Banerjee, A., & Das, K. (2012). Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian Journal of Experimental Biological Sciences, 3(1), 59-65.
Devi, S. R., & Prasad, M. N. V. (1992). Effects of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. Journal of Chemical Ecology, 18, 1981-1990. https://doi.org/10.1007/BF00981921
Ding, H., Cheng, Z., Liu, M., Hayat, S., & Feng, H. (2016). Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system. Biology Open, 5(5), 631-637.
Esfandiari, E., Shekari, F., Shekari, F., & Esfandiari, M. (2007). The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 35(1), 48-56.
Faria, T. M., Gomes, F. G. Jr., de Sá, M. E. & Cassiolato, A. M. R. (2009). Alleopathic effects of plant aqueous extracts on germination, mycorrhization and initial growth of corn, soybean and bean. Revista Brasileira de Ciência do Solo, 33(6), 1625-1633. https://doi.org/10.1590/S0100-06832009000600011
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Hakiman, M., & Maizah, M. (2009). Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. Journal of Medicinal Plant Research, 3(3), 120-131.
Huang, Y., Bai, Y., Wang, Y., & Kong, H. (2013). Allelopathic effects of the extracts from an invasive species Solidago Canadensis L. on Microcystis aeruginosa. Letters in Applied Microbiology, 57(5), 451-458. https://doi.org/10.1111/lam.12133
Huang, Y., Ge, Y., Wang, Q., Zhou, H., Liu, W., & Christie, P. (2017). Allelopathic effects of aqueous extracts of Alternanthera philoxeroides on the growth of Zoysia matrella. Polish Journal of Environmental Studies, 26(1), 97-105. https://doi.org/10.15244/pjoes/65039
Hussain, M. I., & Reigosa, M. J. (2014). Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress. Journal of Plant Physiology, 171(15), 1325-1333. http://doi.org/10.1016/j.jplph.2014.05.009
Hussain, M. I., González, L., & Reigosa, M. J. (2010). Phytotoxic effects of allelochemicals and herbicides on photosynthesis, growth and carbon isotope discrimination in Lactuca sativa. Allelopathy Journal, 26(2), 157-174.
Inderjit, & Keating, K. I. (1999). Allelopathy: Principle, procedures, processes, and promises for biological control. Advances in Agronomy, 67, 141-231. https://doi.org/10.1016/S0065-2113(08)60515-5
Khan, M. A., Marwat, K. B., Hassan, G., & Hussain, Z. (2005). Bioherbicidal effect of tree extracts on seed germination and growth of crops and weeds. Pakistan Journal of Weed Science Research, 11(3-4),179-184.
Krause, G. H., & Wies, E. (1984). Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals, Photosynthesis Research, 5, 139-157. https://doi.org/10.1007/BF00028527
Ladhari, A., Gaaliche B., Zarrelli A., Ghannem M., & Mimoun, M. B. (2020). Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars. South African Journal of Botany, 130, 30-44. https://doi.org/10.1016/j.sajb.2019.11.026
Lichenthaler, H. K., & Buschmann, C. (2001). Chlorophyll and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01
Liu, J., Li, D., Wang, D., Liu, Y., & Song, H. (2017). Allelopathic effects, physiological responses and phenolic compounds in litter extracts of Juniperus rigida Sieb. et Zucc. Chemistry and Biodiversity, 14(8). https://doi:10.1002/cbdv.201700088
Liu, J. X., Bin, H. H., & Xin, W. (2009). Allelopathic effect of aqueous extract from cucumber (Cucumis sativus L.) aboveground part on tomato (Lycopersicon esculentum Mill). Chinese Journal of Eco-Agriculture, 17, 312-317. https://doi.org/10.3724/SP.J.1011.2009.00312
Maqbool, N. (2010). Exploring the role of Sorgaab in improving water stress tolerance in maize at germination and vegetative growth stages. [unpublished M. Phil. Thesis]. University of Agriculture, Faisalabad, Pakistan.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
Nekonam, M. S., Razmjoo, J., Kraimmojeni, H., Sharifnabi, B., Amini, H., & Bahrami, F. (2014). Assessment of some medicinal plants for their allelopathic potential against redroot pigweed (Amaranthus retroflexus). Journal of Plant Protection Research, 54(1), 90-95.
Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and Salinity II: Gas exchange and chlorophyll fluorescence of sorghum (Sorghum bicolor L.) under salt stress. Crop Science, 44(3), 806-811. https://doi.org/10.2135/cropsci2004.8060
Niakan, M., & Saberi, K. (2009). Effects of Eucalyptus allelopathy on growth characters and antioxidant enzymes activity in Phalaris weed. Asian Journal of Plant Sciences, 8(6), 440- 446. https://doi.org/10.3923/ajps.2009.440.446
Nunes, X. P., Gabriela, M. L. D. A., Almeida, J. R. G. D. S., Fillipe, D. O. P., & Lima, D. O. E. (2006). Antimicrobial activity of the essential oil of Sida cordifolia Lin. Brazilian Journal of Pharmaceutical Sciences, 16, 642-644. https://doi.org/10.1590/S0102-695X2006000500010
Perveen, S., Shahbaz, M., Iqbal, M., Akram, M. S., Parveen, A., & Ali, H. M. M. (2016). Induction of cadmium stress tolerance in Triticum aestivum L. by alfalfa leaf extract. Applied Ecology and Environmental Research, 14(5), 121-136. http://doi.org/10.15666/aeer/1405_121136
Reigosa, M. J., Pedrol, N., & González, L. (2006). Allelopathy: A Physiological Process with Ecological Implications. Springer.
Romagni, J. G., Meazza, G., Nanayakkara, N. P. D., & Dayan, F. E. (2000). The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyl phenyl pyruvate dioxy- genase. FEBS Letters, 480(2-3), 301-305. https://doi.org/10.1016/S0014-5793(00)01907-4
Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. https://doi.org/10.1016/j.scienta.2004.04.009
Schreiber, U., Bilger, W., & Neubauer, C. (1995). Chlorophyll fluorescence as a noninstructive indicator for rapid assessment of in vivo photosynthesis. In E.-D. Schulze & M. M. Caldwell (eds.). Ecophysiology of Photosynthesis (pp. 49-70). Springer. https://doi.org/10.1007/978-3-642-79354-7_3
Singh, H. P., Batish, D. R., Shalinder, K., Komal, A., & Kohli, R. K. (2006). α-pinene inhibits growth and induces oxidative stress in roots. Annal of Botany, 98(6), 1261-1269. https://doi.org/10.1093/aob/mcl213
Yang, S., Hu, H., Hu, T., Wang, Q., Ye, M., Luo, J., Peng, Y., & Zhang, R. (2017). Chemical constituents of Cinnamomum septentrionale leaf litter and its allelopathic activity on the growth of maize (Zea mays). Natural Product Research, 31(11), 1314-1317.
Zhang, W. F., Zhang, F., Raziuddin, R., Gong, H. J., Yang, Z. M., Lu, L., Ye, Q. F., & Zhou, W. J. (2008). Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. Journal of Plant Growth Regulation, 27, 159-169. https://doi.org/10.1007/s00344-008-9042-y