Deep Learning for Plant Disease Detection and Classification: A Systematic Analysis and Review
Main Article Content
Abstract
Detection and classification of leaf and crop diseases in a traditional way is a very laborious task as it involves a significant amount of physical work, huge expert manpower, and valuable time. Automatic systems are more accurate and require less time, labor, and physical work. Artificial intelligence and deep learning-based systems can help in the rapid detection and classification of plant leaf and crop diseases as they occur and help to reduce the hostile effects of disease on food security and the economy. In this systematic and state-of-the-art review, an in-depth study was performed to find and assess the use of different deep learning methods in leaf disease detection and classification. In this study, we exhaustively reviewed contemporary research work on leaf and plant disease detection and classification using deep learning methods performed by several researchers worldwide. Various deep-learning techniques with intermediate steps, public datasets, types of diseases detected and classified, types of plants used, performance metrics used to evaluate models, and achieved results are summarized. Finally, various challenges encountered in using deep learning methods were summarized along with some guidelines that will be helpful for future researchers in this area.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Kamilaris, A. and Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90.
Wani, J.A., Sharma, S., Muzamil, M., Ahmed, S., Sharma, S. and Singh, S., 2022. Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Archives of Computational Methods in Engineering, 29(1), 641-677.
Vishnoi, V.K., Kumar, K. and Kumar, B., 2021. Plant disease detection using computational intelligence and image processing. Journal of Plant Diseases and Protection, 128, 19-53.
Sarvamangala, D.R. and Kulkarni, R.V., 2022. Convolutional neural networks in medical image understanding: a survey. Evolutionary Intelligence, 15(1), 1-22.
Wang, Q., Qi, F., Sun, M., Qu, J. and Xue, J., 2019. Identification of tomato disease types and detection of infected areas based on deep convolutional neural networks and object detection techniques. Computational Intelligence and Neuroscience, 2019, https://doi.org/10.1155/2019/9142753.
Zhang, S., Wang, H., Huang, W. and You, Z., 2018. Plant diseased leaf segmentation and recognition by fusion of superpixel, K-means and PHOG. Optik, 157, 866-872.
Krishnakumar, A. and Narayanan, A., 2019. A system for plant disease classification and severity estimation using machine learning techniques. Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), Palladam, India, May 16-17, 2019, pp. 447-457.
Wang, X., 2016. Deep learning in object recognition, detection, and segmentation. Foundations and Trends® in Signal Processing, 8(4), 217-382.
Kumar, R., Chug, A., Singh, A.P. and Singh, D., 2022. A Systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review. Journal of Sensors, 2022, https://doi.org/10.1155/2022/3287561.
Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
Fergus, R., Ranzato, M., Salakhutdinov, R., Taylor, G. and Yu, K., 2012. Deep learning methods for vision. Proceedings of the CVPR 2012 Tutorial, Providence, RI, USA, June 16-21, 2012.
Shi, S., Wang, Q., Xu, P. and Chu, X., 2016. Benchmarking state-of-the-art deep learning software tools. 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, November 16-18, 2016, pp. 99-104.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. and Ghemawat, S., 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv, https://doi.org/10.48550/arXiv.1603.04467.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. and Ghemawat, S., 2016. Introduciton to Tensorflow. [online] Available at: https://www.tensorflow.org/.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S. and Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, USA, November 3-7, 2014, pp. 675-678.
Jia, Y., 2014. Caffe. [online] Available at: http://caffe.berkeleyvision.org/.
Seide, F. and Agarwal, A., 2016. CNTK. [online] Available at: https://github.com/microsoft/CNTK.
Seide, F. and Agarwal, A., 2016. CNTK: Microsoft's open-source deep-learning toolkit. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Fransisco, USA, August 13-17, 2016, pp. 2135-2135.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S., 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32, 8024-8035.
Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J., Bisson, V., Snyder, J.B., Bouchard, N., Boulanger-Lewandowski, N., Bouthillier, X., de Brébisson, A., Breuleux, O., Carrier, P.-L., Cho, K., Chorowski, J., Christiano, P., Cooijmans, T., Côté, M.-A., Côté, M., Courville, A., Dauphin, Y.N., Delalleau, O., Demouth, J., Desjardins, G., Dieleman,S., Dinh, L. Ducoffe, M., Dumoulin, V., Kahou, S.E., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow, I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I., HengJ.-H., Hidasi, B., Honari, S., Jain, A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent, C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J.A., Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.A., Mastropietro, O., McGibbon, R.T., Memisevic, R., van Merriënboer, B., Michalski, V., Mirza, M., Orlandi, A., Pal, C., Pascanu, R., Pezeshki, M., Raffel, C., Renshaw, D., Rocklin, M., Romero, A., Roth, M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J., Schulman, J., Schwartz, G., Serban, I.V., Serdyuk, D., Shabanian, S., Simon, E., Spieckermann, S., Subramanyam, R., Sygnowski, J., Tanguay, J., van Tulder, G., Turian, J., Urban, S., Vincent, P., Visin, F., de Vries, H., Warde-Farley, D., Webb, D.J., Willson, M., Xu, K., Xue, L., Yao, L., Zhang, S. and Zhang, Y., 2016. Theano: A Python framework for fast computation of mathematical expressions. arXiv, https://doi.org/10.48550/arXiv.1605.02688.
Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A. and Bengio, Y., 2016. Theano. [online] Available at: https://github.com/Theano/Theano/.
Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C. and Zhang, Z., 2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv, https://doi.org/10.48550/arXiv.1512.01274.
Chollet, F., 2015. Keras. [online] Available at: https://github.com/keras-team/keras.
Liu, J. and Wang, X., 2021. Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17,1-18.
Saleem, M.H., Potgieter, J. and Arif, K.M., 2019. Plant disease detection and classification by deep learning. Plants, 8(11), https://doi.org/10.3390/plants8110468.
LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Proceeding of the 25th International Conference on Neural Information Proceeding Systems, Lake Tahoe, USA, December 3-6, 2012, pp. 1097-1105.
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. and LeCun, Y., 2013. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv, https://doi.org/10.48550/arXiv.1312.6229.
Zeiler, M.D. and Fergus, R., 2014. Visualizing and understanding convolutional networks. 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, September 6-12, 2014, pp. 818-833.
Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv, https://doi.org/10.48550/arXiv.1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, June 7-12, 2015, pp. 1-9.
He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, June 26-July 1, 2016, pp. 770-778.
Srivastava, R.K., Greff, K. and Schmidhuber, J., 2015. Highway networks. arXiv, https://doi.org/10.48550/arXiv.1505.00387.
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv, https://doi.org/10.48550/arXiv.1602.07360.
Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, July 21-26, 2017, pp. 4700-4708.
Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, July 21-26, 2017, pp. 1251-1258.
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv, https://doi.org/10.48550/arXiv.1704.04861.
Woo, S., Park, J., Lee, J.Y. and Kweon, I.S., 2018. Cbam: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September 8-14, 2018, pp. 3-19.
Khan, A., Sohail, A. and Ali, A., 2018. A new channel boosted convolutional neural network using transfer learning. arXiv, https://doi.org/10.48550/arXiv.1804.08528.
Tan, M. and Le, Q., 2019, May. Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, Long Beach, USA, June 10-15, 2019, pp. 6105-6114.
Hughes, D. and Salathé, M., 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv, https://doi.org/10.48550/arXiv.1511.08060.
Geetharamani, G. and Pandian, A., 2019. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers and Electrical Engineering, 76, 323-338.
Geetharamani, G. and Pandian, A., 2019. Data for: Identification of plant leaf diseases using a nine-layer deep convolutional neural network. [Online] Available at: https://data.mendeley.com/datasets/tywbtsjrjv/1.
Bhattarai, S., 2018. New Plant Diseases Dataset. [Online] Available at: https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset.
Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S. and Batra, N., 2020. PlantDoc: A dataset for visual plant disease detection. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, January 5-7, 2020, pp. 249-253.
Kayal, P., 2020. PlantDoc-Dataset. [online] Available at: https://github.com/pratikkayal/PlantDoc-Dataset.
Prajapati, H.B., Shah, J.P. and Dabhi, V.K., 2017. Detection and classification of rice plant diseases. Intelligent Decision Technologies, 11(3), 357-373.
Shah, J.P., Prajapati, H.B. and Dabhi, V.K., 2016. A survey on detection and classification of rice plant diseases. 2016 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), Bangalore, India, March 10-11, 2016, pp. 1-8.
Shah, J., Prajapati, H. and Dabhi, V., 2019. Rice Leaf Diseases Dataset. [online] Available at: https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases#.
Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio, F.R.A., Talamini, V., Chitarra, L.G. and Oliveira, S.A.S., 2018. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Latin America Transactions, 16(6), 1749-1757.
Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio, F.R.A., Talamini, V., Chitarra, L.G. and Oliveira, S.A.S., 2018. Image Database of Plant Disease Symptoms (PDDB). [online] Available at: https://www.digipathos-rep.cnptia.embrapa.br/.
Thapa, R., Zhang, K., Snavely, N., Belongie, S. and Khan, A., 2020. The plant pathology challenge 2020 dataset to classify foliar disease of apples. Applications in Plant Sciences, 8(9), https://doi.org/10.1002/aps3.11390.
Thapa, R., Snavely, N., Belongie, S. and Khan, A., 2020. Plant Pathology 2020 - FGVC7. [online] Available at: https://www.kaggle.com/c/plant-pathology-2020-fgvc7/data?select= images.
Wiesner-Hanks, T., Stewart, E.L., Kaczmar, N., DeChant, C., Wu, H., Nelson, R.J., Lipson, H. and Gore, M.A., 2018. Image set for deep learning: field images of maize annotated with disease symptoms. BMC Research Notes, 11(1), https://doi.org/10.1186/s13104-018-3548-6.
Wiesner-Hanks, T. and Brahimi, M., 2018. The OSF Dataset. [online] Available at: https://osf.io/p67rz/.
Mensah, P.K., Akoto-Adjepong, V., Adu, K., Ayidzoe, M.A., Bediako, E.A., Nyarko-Boateng, O., Boateng, S., Donkor, E.F., Bawah, F.U., Awarayi, N.S. Nimbe, P., Nti, I.K., Abdulai, M., Adjei, R.R., Opoku, M., Abdulai, S. and Amu-Mensah, F., 2023. CCMT: Dataset for crop pest and disease detection. Data in Brief, 49, https://doi.org/10.1016/j.dib.2023.109306.
Mensah, P.K., Akoto-Adjepong, V., Adu, K., Ayidzoe, M.A., Bediako, E.A., Nyarko-Boateng, O., Boateng, S., Donkor, E.F., Bawah, F.U., Awarayi, N.S. and Nimbe, P., 2023. Dataset for Crop Pest and Disease Detection. [online] Available at: https://data.mendeley.com/datasets/bwh3zbpkpv/1.
The American Phytopathological Society, 2023. APS Image Database. [online] Available at: https://imagedatabase.apsnet.org/.
Parraga-Alava, J., Cusme, K., Loor, A. and Santander, E., 2019. RoCoLe: A robusta coffee leaf images dataset for evaluation of machine learning based methods in plant diseases recognition. Data in Brief, 25, https://doi.org/10.1016/j.dib.2019.104414.
Parraga-Alava, J., Cusme, K., Loor, A., Santander, E., 2019. RoCoLe: A Robusta Coffee Leaf Images Dataset. [online] Available at: https://data.mendeley.com/datasets/c5yvn32dzg/2.
Ahmad, A., Saraswat, D., Gamal, A.E. and Johal, G., 2021. CD&S dataset: Handheld imagery dataset acquired under field conditions for corn disease identification and severity estimation. arXiv, https://doi.org/10.48550/arXiv.2110.12084.
Ahmad, A., 2021. CD&S Dataset. [online] Available at: https://osf.io/s6ru5/.
Rauf, H.T., Saleem, B.A., Lali, M.I.U., Khan, M.A., Sharif, M. and Bukhari, S.A.C., 2019. A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning. Data in Brief, 26, https://doi.org/10.1016/j.dib.2019.104340.
Rauf, H.T., Saleem, B.A., Lali, M.I.U., Khan, M.A., Sharif, M. and Bukhari, S.A.C., 2019. A Citrus Fruits and Leaves Dataset for Detection and Classification of Citrus Diseases through Machine Learning. [online] Available at: https://data.mendeley.com/datasets/3f83gxmv57/2.
Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.-X., Chang, Y.-F. and Xiang, Q.-L., 2007. A leaf recognition algorithm for plant classification using probabilistic neural network. 2007 IEEE International Symposium on Signal Processing and Information Technology, Giza, Egypt, December 15-18, 2007, pp. 11-16.
Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F. and Xiang, Q.L., 2007. Flavia: A Leaf Recognition Algorithm for Plant Classification using PNN (Probabilistic Neural Network). [online] Available at: https://flavia.sourceforge.net/.
Militante, S.V., Gerardo, B.D. and Dionisio, N.V., 2019. Plant leaf detection and disease recognition using deep learning. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, October 3-6, 2019, pp. 579-582.
Yao, Q., Guan, Z., Zhou, Y., Tang, J., Hu, Y. and Yang, B., 2009. Application of support vector machine for detecting rice diseases using shape and color texture features. 2009 International Conference on Engineering Computation, Hong Kong, China, May 2-3, 2009, pp. 79-83.
Kaur, S., Pandey, S. and Goel, S., 2018. Semi‐automatic leaf disease detection and classification system for soybean culture. IET Image Processing, 12(6), 1038-1048, https://doi.org/10.1049/iet-ipr.2017.0822.
Dhingra, G., Kumar, V. and Joshi, H.D., 2018. Study of digital image processing techniques for leaf disease detection and classification. Multimedia Tools and Applications, 77, 19951-20000.
Ramesh, S., Hebbar, R., Niveditha, M., Pooja, R., Shashank, N. and Vinod, P.V., 2018, April. Plant disease detection using machine learning. 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), Bangalore, India, April 25-28, 2018, pp. 41-45.
Hallau, L., Neumann, M., Klatt, B., Kleinhenz, B., Klein, T., Kuhn, C., Röhrig, M., Bauckhage, C., Kersting, K., Mahlein, A.K. and Steiner, U., 2018. Automated identification of sugar beet diseases using smartphones. Plant Pathology, 67(2), 399-410.
Pujari, J.D., Yakkundimath, R. and Byadgi, A.S., 2014. Recognition and classification of produce affected by identically looking powdery mildew disease. Acta Technologica Agriculturae, 17(2), 29-34.
Masazhar, A.N.I. and Kamal, M.M., 2017, November. Digital image processing technique for palm oil leaf disease detection using multiclass SVM classifier. 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, November 28-30, 2017, pp. 1-6.
Cruz, A., Ampatzidis, Y., Pierro, R., Materazzi, A., Panattoni, A., De Bellis, L. and Luvisi, A., 2019. Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence. Computers and Electronics in Agriculture, 157, 63-76.
Deshapande, A.S., Giraddi, S.G., Karibasappa, K.G. and Desai, S.D., 2019. Fungal disease detection in maize leaves using haar wavelet features. In: S. Satapathy and A. Joshi, eds. Information and Communication Technology for Intelligent Systems: Smart Innovtion, Systems and Technologies. Vol 106. Singapore: Springer, pp. 275-286.
Pantazi, X.E., Moshou, D. and Tamouridou, A.A., 2019. Automated leaf disease detection in different crop species through image features analysis and one class classifiers. Computers and Electronics in Agriculture, 156, 96-104.
Risha, K.P., Chempak, K.A. and Sindhu, C.S., 2016. Difference of gaussian on frame differenced image. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 3(1), 92-95.
Wang, H., Li, G., Ma, Z. and Li, X., 2012. Application of neural networks to image recognition of plant diseases. In 2012 International Conference on Systems and Informatics, Yantai, China, May 19-20, 2012, pp. 2159-2164.
Esmaeel, A.A., 2018. A novel approach to classify and detect bean diseases based on image processing. In 2018 IEEE Symposium on Computer Applications and Industrial Electronics, Penang, Malaysia, April 28-29, 2018, pp. 297-302.
Asfarian, A., Herdiyeni, Y., Rauf, A. and Mutaqin, K.H., 2013. Paddy diseases identification with texture analysis using fractal descriptors based on fourier spectrum. 2013 International Conference on Computer, Control, Informatics and Its Applications, Jakarta, Indonesia, November 19-20, 2013, pp. 77-81.
Fuentes, A., Yoon, S., Kim, S.C. and Park, D.S., 2017. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9). https://doi.org/10.3390/s17092022.
Goncharov, P., Ososkov, G., Nechaevskiy, A., Uzhinskiy, A. and Nestsiarenia, I., 2019. Disease detection on the plant leaves by deep learning. International Conference on Neuroinformatics: Advances in Neural Computation, Machine Learning, and Cognitive Research II, Moscow, Russia, October 8-12, 2019, pp. 151-159.
Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D. and Stefanovic, D., 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, 2016, https://doi.org/10.1155/2016/3289801.
Too, E.C., Yujian, L., Njuki, S. and Yingchun, L., 2019. A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161, 272-279.
Mohanty, S.P., Hughes, D.P. and Salathé, M., 2016. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, https://doi.org/10.3389/fpls.2016.01419.
Arun, R.A. and Umamaheswari, S., 2023. Effective multi-crop disease detection using pruned complete concatenated deep learning model. Expert Systems with Applications, 213, https://doi.org/10.1016/j.eswa.2022.118905.
Thakur, P.S., Sheorey, T. and Ojha, A., 2023. VGG-ICNN: A lightweight CNN model for crop disease identification. Multimedia Tools and Applications, 82(1), 497-520.
Algani, Y.M.A., Caro, O.J.M., Bravo, L.M.R., Kaur, C., Ansari, M.S.A. and Bala, B.K., 2023. Leaf disease identification and classification using optimized deep learning. Measurement: Sensors, 25, https://doi.org/10.1016/j.measen.2022.100643.
Bensaadi, S. and Louchene, A., 2023. Low-cost convolutional neural network for tomato plant diseases classifiation. IAES International Journal of Artificial Intelligence, 12(1), 162-170.
Singh, R.K., Tiwari, A. and Gupta, R.K., 2022. Deep transfer modeling for classification of Maize Plant Leaf Disease. Multimedia Tools and Applications, 81(5), 6051-6067.
Chen, J., Chen, J., Zhang, D., Nanehkaran, Y.A. and Sun, Y., 2021. A cognitive vision method for the detection of plant disease images. Machine Vision and Applications, 32, https://doi.org/10.1007/s00138-020-01150-w.
Bell, J. and Dee, H.M., 2019. Leaf segmentation through the classification of edges. arXiv, https://doi.org/10.48550/arXiv.1904.03124.
Krishnan, V.G., Deepa, J.R.V.P., Rao, P.V., Divya, V. and Kaviarasan, S., 2022. An automated segmentation and classification model for banana leaf disease detection. Journal of Applied Biology and Biotechnology, 10(1), 213-220.
Elaraby, A., Hamdy, W. and Alruwaili, M., 2022. Optimization of deep learning model for plant disease detection using particle swarm optimizer. Computers, Materials and Continua, 71(2), 4019-4031, https://doi.org/10.32604/cmc.2022.022161.
Lee, S.H., Goëau, H., Bonnet, P. and Joly, A., 2020. New perspectives on plant disease characterization based on deep learning. Computers and Electronics in Agriculture, 170, https://doi.org/10.1016/j.compag.2020.105220.
Kaushik, M., Prakash, P., Ajay, R. and Veni, S., 2020. Tomato leaf disease detection using convolutional neural network with data augmentation. 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, June 10-12, 2020, pp. 1125-1132.
Atila, Ü., Uçar, M., Akyol, K. and Uçar, E., 2021. Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics, 61, https://doi.org/10.1016/j.ecoinf.2020.101182.
Wspanialy, P. and Moussa, M., 2020. A detection and severity estimation system for generic diseases of tomato greenhouse plants. Computers and Electronics in Agriculture, 178, https://doi.org/10.1016/j.compag.2020.105701.
Nagasubramanian, K., Jones, S., Singh, A.K., Singh, A., Ganapathysubramanian, B. and Sarkar, S., 2018. Explaining Hyperspectral Imaging based Plant Disease Identification: 3D CNN and Saliency Maps. [online] Available at: http://www.interpretable-ml.org/nips2017workshop/papers/16.pdf.
Das, P.K. and Rupa, S.S., 2023. ResNet for leaf-based disease classification in strawberry plant. International Journal of Applied Methods in Electronics and Computers, 11(3), 151-157.
Das, P.K., 2023. Leaf disease classification in bell pepper plant using VGGNet. Journal of Innovative Image Processing, 5(1), https://doi.org/10.36548/jiip.2023.1.003.
Barbedo, J.G.A., 2018. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Computers and Electronics in Agriculture, 153, 46-53.
Bhagwat, R. and Dandawate, Y., 2021. A framework for crop disease detection using feature fusion method. International Journal of Engineering and Technology Innovation, 11(3), 216-228.