Diversity Analysis of 53 Soybean Accessions Introduced from China Based on Morphological Characteristics and SSR Markers

Main Article Content

Rosliana Purwaning Dyah
Kunto Wibisono
Rerenstradika Tizar Terryana
Kristianto Nugroho
Ratna Utari
Suparjo Suparjo
Umar
Puji Lestari
I Made Tasma

Abstract

Indonesia still faces challenges in meeting its national soybean demand. Genetic diversity can provide new resources to improve soybean production and quality. Genetic diversity of 53 soybean accessions introduced from China, based on morphological characteristics and 17 SSR markers, was analyzed in this study. Principal component analysis (PCA) conducted on morphological characters produced a total diversity value of 64.67% and identified four main components. Based on phylogenetic analysis and principal coordinate analysis (PCoA) two accessions showed low genetic similarity of 78% (China cult-55 and Mi yang niu mao huang), which indicated that they could be selected as parents for plant breeding programs. In addition, 772 SSR alleles at an average of 45 alleles per locus were detected. The average heterozygosity was 0.83, and the average polymorphic information content (PIC) value was 0.96. All SSR markers showed a PIC value > 0.8, indicating their informativeness in analyzing genetic diversity of soybean. The phylogenetic analysis indicated a genetic similarity of 82% and the accessions were grouped into two main clusters. The phylogenetic analysis depicted that several accessions could be grouped based on the growth type and origin.  The results of morphological characterization and molecular markers in the analysis of genetic diversity are beneficial for selecting parental crosses when developing new varieties.

Article Details

Section
Original Research Articles

References

Kumar, S. and Pandey, G., 2020. Biofortification of pulses and legumes to enhance nutrition. Heliyon, 6(3), https://doi.org/10.1016/j.heliyon.2020.e03682.

Johnson, K.V.H., Krishna, T.P.A., Dash, M., Thiyageshwari, S., Ceasar, S.A. and Selvi, D., 2023. Food and nutritional security: innovative approaches for improving micronutrient use efficiency in soybean (Glycine max (L.) Merrill) under hostile soils. Journal of Soil Science and Plant Nutrition, 23(1), 56-70, https://doi.org/10.1007/s42729-022-01025-1.

Tamang, J.P., Anupma, A. and Shangpliang, N.J.H., 2022. Ethno-microbiology of tempe, an Indonesian fungal-fermented soybean food and koji, a Japanese fungal starter culture. Current Opinion in Food Science, 48, 1-8, https://doi.org/10.1016/j.cofs.2022.100912.

Herlina, V.T., Lioe, H.N., Kusumaningrum, H.D. and Adawiyah, D.R., 2020. Nutritional composition of tauco as Indonesian fermented soybean paste. Journal of Ethnic Foods, 9(44), 1-17, https://doi.org/10.1186/s42779-022-00159-y.

Singh, R.J., 2017. Botany and cytogenetics of soybean. In: H.T. Nguyen and Bhattacharyya, eds. The Soybean Genome, Compendium of Plant Genomes. New York: Springer International Publishing, pp. 11-38.

Ningsih, F., Zubaidah, S. and Kuswantoro, H., 2019. Diverse morphological characteristics of soybean (Glycine max (L.) Merill) pods and seeds germplasm. IOP Conference Series: Earth and Environmental Science, 276(1), https://doi.org/10.1088/1755-1315/276/1/012014.

Miranda, C., Scaboo, A., Cober, E., Denwar, N. and Bilyeu, K., 2020. The effects and interaction of soybean maturity gene alleles controlling flowering time, maturity, and adaptation in tropical environments. BMC Plant Biology, 20(1), https://doi.org/10.1186/s12870-020-2276-y.

Song, J., Sun, X., Zhang, K., Liu, S., Wang, J., Yang, C., Jiang, S., Siyal, M., Li, X., Qi, Z., Wang, Y., Tian, X., Fang, Y., Tian, Z., Li, W. and Ning, H., 2020. Identification of QTL and genes for pod number in soybean by linkage analysis and genome-wide association studies. Molecular Breeding, 40(6), https://doi.org/10.1007/s11032-020-01140-w.

Kementrian Pertanian Republik Indonesia, 2018. Produksi Dan Produktivitas Kedelai Menurut Provinsi. [online] Available at: https://www.pertanian.go.id/home.

Arif, S., Isdijoso, W., Fatah, A.R. and Tamyis, A.R., 2020. Strategic Review of Food Security and Nutrition in Indonesia. Jakarta: World Food Programme.

Rahman, S.U., McCoy, E., Raza, G., Ali, Z., Mansoor, S. and Amin, I., 2023. Improvement of soybean; a way forward transition from genetic engineering to new plant breeding technologies. Molecular Biotechnology, 65, 162-180, https://doi.org/10.1007/s12033-022-00456-6.

Tasma, I.M., Yani, N.P.M.G., Purwaningdyah, R., Satyawan, D., Nugroho, K., Lestari, P., Trijatmiko, K.R. and Mastur, M., 2018. Genetic diversity analysis and F2 population development for breeding of long juvenile trait in soybean. Jurnal AgroBiogen, 14(1), 11-22.

Mawasid, F.P., Syukur, M., Trikoesoemaningtyas, T. and Wibisono, K., 2023. Evaluation to select tomato genotypes with big fruit and verification of genetic advance. Current Applied Science and Technology, 23(3), https://doi.org/10.55003/cast.2022.03.23.004.

Yali, W. and Mitiku, T., 2022. Mutation breeding and its importance in modern plant breeding. Journal of Plant Sciences, 10(2), 64-70, https://doi.org/10.11648/j.jps.20221002.13.

Wibisono, K., Aisyah, S.I., Nurcholis, W. and Suhesti, S., 2022. Sensitivity in callus tissue of Plectranthus amboinicus (L.) through mutation induction with colchicine. Agrivita Journal of Agricultural Science, 44(1), 82-95, https://doi.org/10.17503/agrivita.v44i1.3058.

Wibisono, K., Aisyah, S.I., Nurcholis, W. and Suhesti, S., 2021. Performance of putative mutants and genetic parameters of Plectranthus amboinicus (L.) through mutation induction with colchicine. Agrosainstek Jurnal Ilmu dan Teknologi Pertanian, 5(2), 89–99, https://doi.org/10.33019/agrosainstek.v5i2.247.

Dama, H., Aisyah, S.I., Sudarsono, S., Dewi, A.K. and Wibisono, K., 2022. Identification, selection, and response of radiation induced towuti mutant rice (Oryza sativa L.) in drought stress conditions. Atom Indonesia, 48(2), 107-114, https://doi.org/10.17146/aij.2022.1198.

Komariah, A., Noertjahyani, Hardedi and Buhturi, S., 2017. Identification, selection and observation of nuansa sanggabuana soybean, its yield and resistance to diseases. Asian Journal of Agriculture and Rural Development, 7(1), 17-27, https://doi.org/10.18488/journal.1005/2017.7.1/1005.1.17.27.

Nugroho, K., Terryana, R.T., Reflinur, N., Asadi, N. and Lestari, P., 2017. The genetic diversity analysis of introduced soybean cultivars using microsatellite markers. Informatika Pertanian, 26(2), 121-132, https://doi.org/10.21082/ip.v26n2.2017.p121-132.

Swarup, S., Cargill, E.J., Crosby, K., Flagel, L., Kniskern, J. and Glenn, K.C., 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839-852, https://doi.org/10.1002/csc2.20377.

Mwangangi, I.M., Kiilu-Muli, J. and Neondo, J.O., 2019. Plant hybridization as an alternative technique in plant breeding improvement. Asian Journal of Research in Crop Science, 4(1), https://doi.org/10.9734/ajrcs/2019/v4i130059.

Nugroho, K., Kosmiatin, M., Husni, A., Tasma, I.M. and Lestari, P., 2020. Identification of soybean (Glycine max [L.] Merr.) mutants and improved varieties having diverse drought tolerance character using SSR marker. IOP Conference Series: Earth and Environmental Science, 482(1), https://doi.org/10.1088/1755-1315/482/1/012014.

Tasma, I.M., 2015. Pemanfaatan teknologi sekuensing genom untuk mempercepat program pemuliaan tanaman. Jurnal Penelitan dan Pengembangan Pertanian, 34(4), 159-168, https://doi.org/10.21082/jp3.v34n4.2015.p159-168.

Sari, K.P. and Sulistyo, A., 2018. Assessment of soybean resistance to whitefly (Bemisia tabaci Genn.) infestations. Pertanika Journal Tropical Agricultural Science, 41(2), 825-832.

Tripathi, N., Tripathi, M.K., Tiwari, S. and Payasi, D.K., 2022. Molecular breeding to overcome biotic stresses in soybean: update. Plants, 11(15), 1-24, https://doi.org/10.3390/plants11151967.

Pardeshi, P., Jadhav, P., Sakhare, S., Zunjare, R., Rathod, D., Sonkamble, P., Saroj, R. and Varghese, P., 2023. Morphological and microsatellite marker-based characterization and diversity analysis of novel vegetable soybean [Glycine max (L.) Merrill]. Molecular Biology Reports, 50(5), 4049-4060, https://doi.org/10.1007/s11033-023-08328-1.

Carvalho, M., Lino-Neto, T., Rosa, E. and Carnide, V., 2017. Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273-4284, https://doi.org/10.1002/jsfa.8250.

Ahmad, R., Anjum, M.A. and Balal, R.M., 2020. From markers to genome based breeding in horticultural crops: an overview. Phyton-International Journal of Experimental Botany, 89(2), 183-204, https://doi.org/10.32604/phyton.2020.08537.

Jonah, P.M., Bello, L.L., Lucky, O., Midau, A. and Moruppa, S.M., 2011. Review: the importance of molecular markers in plant breeding programmes. Global Journal of Science Frontier Research, 11(5), 5-12.

Hasan, N., Choudhary, S., Naaz, N., Sharma, N. and Laskar, R.A., 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 1-26, https://doi.org/10.1186/s43141-021-00231-1.

Rieseberg, L.H., Ellstrand, N.C. and Arnold, M., 1993. What can molecular and morphological markers tell us about plant hybridization?. Critical Reviews in Plant Sciences, 12(3), 213-241, https://doi.org/10.1080/07352689309701902.

Soltabayeva, A., Ongaltay, A., Omondi, J.O. and Srivastava, S., 2021. Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10(2), 1-18, https://doi.org/10.3390/plants10020243.

Oliveira, M. and Azevedo, L., 2022. Molecular markers: an overview of data published for fungi over the last ten years. Journal of Fungi, 8(8), 1-12, https://doi.org/10.3390/jof8080803.

Grover, A. and Sharma, P.C., 2016. Development and use of molecular markers: past and present. Critical Reviews in Biotechnology, 36(2), 290-302, https://doi.org/10.3109/07388551.2014.959891.

Tasma, I.M., Lorenzen, L.L., Green, D.E. and Shoemaker, R.C., 2001. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Molecular Breeding, 8(1), 25-35, https://doi:10.1023/A:1011998116037.

Jahnke, G., Smidla, J. and Poczai, P., 2022. MolMarker: a simple tool for dna fingerprinting studies and polymorphic information content calculation. Diversity, 14(6), 1-9, https://doi.org/10.3390/d14060497.

Sahu, P.K., Sao, R., Mondal, S., Vishwakarma, G., Gupta, S.K., Kumar, V., Singh, S., Sharma, D. and Das, B.K., 2020. Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: a comprehensive review. Plants, 9(10), 1-47, https://doi.org/10.3390/plants9101355.

Rani, R., Raza, G., Tung, M.H., Rizwan, M., Ashfaq, H., Shimelis, H., Razzaq, M.K. and Arif, M., 2023. Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers. PLoS One, 18(5), 1-19, https://doi.org/10.1371/journal.pone.0286099.

Jain, R.K., Joshi, A. and Jain, D., 2017. Molecular marker based genetic diversity analysis in soybean [Glycine max (L.) Merrill] genotypes. International Journal of Current Microbiology and Applied Sciences, 6(6), 1034-1044, https://doi.org/10.20546/ijcmas.2017.606.119.

Sulistyo, A., Indriani, F.C., Mejaya, M.J., Sugiharto, A.N. and Agranoff, J., 2019. Genetic diversity of Indonesian soybean (Glycine max (L.) Merrill) germplasm based on morphological and microsatellite markers. IOP Conference Series: Earth and Environmental Science, 293(1), https://doi.org/10.1088/1755-1315/293/1/012006.

Slamet, S., Saribanon, N., Pardal, S.J., Setia, T.M., Enggarini, W. and Reflinur, R., 2022. Determination of the parents based on molecular analysis for soybean lines development. Jurnal Sains Natural, 12(3), 112-123, https://doi.org/10.31938/jsn.v12i3.391.

Agam, M.G., Kusmiyati, F., Anwar, S. and Herwibawa, B., 2020. Diversity analysis in soybean (Glycine max [L.] Merrill) mutant lines grown in saline soil using agronomic traits and RAPD markers. IOP Conference Series: Earth and Environmental Science, 482(1), 1-7, https://doi.org/10.1088/1755-1315/482/1/012017.

Shakil, S.K., Sultana, S., Hasan, M.M., Hossain, M.M., Ali, M.S. and Prodhan, S.H., 2015. SSR marker based genetic diversity analysis of modern rice varieties and coastal landraces in Bangladesh. Indian Journal of Biotechnology, 14(1), 33-41.

Singh, A.K., Chaurasia, S., Kumar, S., Singh, R., Kumari, J., Yadav, M.C., Singh, N., Gaba, S. and Jacob, S.R., 2018. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biology, 18(1), 1-15, https://doi.org/10.1186/s12870-018-1476-1.

Amiteye, S., 2021. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7(10), 1-20, https://doi.org/10.1016/j.heliyon.2021.e08093.

Tasma, I.M., 2016. The use of genomic and genetic transformation technologies for oil palm productivity improvement. Perspektif, 15(1), 50-72.

Chaerani, C., Dadang, A., Fatimah, F., Husin, B.A., Sutrisno, S. and Yunus, M., 2021. SRAP analysis of brown planthopper (Nilaparvata lugens) populations maintained on differential rice host varieties. Biodiversitas Journal of Biological Diversity, 22(10), 4266-4272, https://doi.org/10.13057/biodiv/d221018.

Sutoro, S., Lestari, P., Reflinur, R. and Kurniawan, H., 2015. Genetic diversity of upland rice landraces from java island as revealed by SSR markers. Indonesian Journal of Agricultural Science, 16(1), 1-10.

Reflinur, R., Lestari, P. and Lee, S.H., 2017. The potential use of SSR markers to support the morphological identification of Indonesian mungbean varieties. Indonesian Journal of Agricultural Science, 17(2), 65-74, https://doi.org/10.21082/ijas.v17n2.2016.p65-74.

Wegadara, M., Dewanti, M., Diningsih, E., Rachmawati, F., Sukma, D. and Sudarsono, S., 2022. Genetic diversity based on SSR markers of 30 Aeridinae subtribe orchid genetic resources of Indonesian Ornamental Crop Research Institute, Cianjur, Indonesia. Biodiversitas Journal of Biological Diversity, 23(6), 2943-2956, https://doi.org/10.13057/biodiv/d230621.

Lestari, P., Putri, R.E., Rineksane, I.A., Handayani, E., Nugroho, K. and Terryana, R.T., 2021. Genetic diversity of 27 accessions of soybean (Glycine max L. Merr.) introduced from subtropics based on SSR marker. Vegetalika, 10(1), 1-17, https://doi.org/10.22146/veg.58418.

Terryana, R.T., Nugroho, K., Reflinur, R., Mulya, K., Dewi, N. and Lestari, P., 2017. Genotypic and phenotypic diversities of 48 introduced soybean accessions originated from China. Jurnal AgroBiogen, 13(1), 1-16.

Cregan, P.B., Jarvik, T., Bush, A.L., Shoemaker, R.C., Lark, K.G., Kahler, A.L., Kaya, N., VanToai, T.T., Lohnes, D.G., Chung, J., Specht, J.E., 1999. An integrated genetic linkage map of the soybean genome. Crop Science, 39(5), 1464–1490, https://doi: 10.2135/cropsci1999.3951464x.

United States Department of Agriculture, 2006. Mapped Soybean SSR Loci. [online] Available at: https://sgil.ba.ars.usda.gov/cregan/soymap3.mht.

Asadi, Dewi, N., Nugroho, K., Terryana, R.T., Mastur and Lestari, P., 2020. Evaluation of ssr and important agronomical characters of promising mutant lines of soybean. Biodiversitas, 21(1), 299-310, https://doi.org/10.13057/biodiv/d210137.

Fehr, W.R., Caviness, C.E., Burmood, D.T. and Pennington, J.S., 1971. Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Science, 11(6), 929-931, https://doi.org/10.2135/cropsci1971.0011183x001100060051x.

Butar-Butar, D.V. and Lubis, I., 2018. Respon genotipe tanaman kedelai (Glycine max (L.) Merrill) dari berbagai negara terhadap kondisi lingkungan tumbuh kebun IPB Sawah Baru. Buletin Agrohorti, 6(2), 258-269, https://doi.org/10.29244/agrob.v6i2.18942.

Doyle, J.J. and Doyle, J.L., 1990. Isolation of plant DNA from fresh tissue. Focus (Madison), 1(12), 13-15.

RStudio-Team, 2020. RStudio: Integrated Development Environment for R. [online] Available at: http://www.rstudio.com/.

Lazer I.J. and Horvath-Lazar, E., 2010. GelAnalyzer 2010a. [online] Available at: http://www.gelanalyzer.com/index.html.

Rohlf, F.J., 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, Version 2.2. New York: Applied Biostatistics, Inc.

Liu, K. and Muse, S.V., 2005. PowerMaker: An integrated analysis environment for genetic maker analysis. Bioinformatics, 21(9), 2128-2129, https://doi.org/10.1093/bioinformatics/bti282.

Kachare, S., Tiwari, S., Tripathi, N. and Thakur, V.V., 2020. Assessment of genetic diversity of soybean (Glycine max) genotypes using qualitative traits and microsatellite markers. Agricultural Research, 9(1), 23-34, https://doi.org/10.1007/s40003-019-00412-y.

Rahajeng, W. and Adie, M.M., 2013. Early maturity soybean variety. Buletin Palawija, 26, 91-100.

Shilpashree, N., Devi, S.N., Manjunathagowda, D.C., Muddappa, A., Abdelmohsen, S.A. M., Tamam, N., Elansary, H.O., El-Abedin, T.K.Z., Abdelbacki, A.M.M. and Janhavi, V., 2021. Morphological characterization, variability and diversity among vegetable soybean (Glycine max L.) genotypes. Plants, 10(4), 1-11, https://doi.org/10.3390/plants10040671.

Terryana, R.T., Safina, N.D., Suryani, S., Nugroho, K. and Lestari, P., 2020. Morphological and molecular based genetic diversity assesment among soybean accessions introduced from subtropical areas. Jurnal Ilmu-Ilmu Hayati, 19(3B), 451-465, https://doi.org/10.14203/beritabiologi.v19i3B.3894.

Singh, P.K., Shrestha, J. and Kushwaha, U.K.S., 2020. Multivariate analysis of soybean genotypes. Journal of Agriculture and Natural Resources, 3(1), 69-76, https://doi.org/10.3126/janr.v3i1.27092.

El-Hashash, E., 2016. Genetic diversity of soybean yield based on cluster and principal component analyses. Journal of Advances in Biology and Biotechnology, 10(3), 1–9, https://doi: 10.9734/jabb/2016/29127.

Anshori, M.F., Purwoko, B.S., Dewi, I.S., Ardie, S.W. and Suwarno, W.B., 2021. A new approach to select doubled haploid rice lines under salinity stress using indirect selection index. Rice Science, 28(4), 368–378, https://doi.org/10.1016/j.rsci.2021.05.007.

Kristamtini, K., Taryono, T., Basunanda, P. and Murti, R.H., 2016. Genetic diversity of local black rice cultivars based on microsatellite markers. Jurnal AgroBiogen, 10(2), 69-76, https://doi.org/10.21082/jbio.v10n2.2014.p69-76.

Asadi, A., Dewi, N., Nugroho, K., Terryana, R.T., Mastur, M. and Lestari, P., 2019. Evaluation of SSR and important agronomical characters of promising mutant lines of soybean. Biodiversitas Journal of Biological Diversity, 21(1), 299-310, https://doi.org/10.13057/biodiv/d210137.

Widaningsih, N.A., Purwanto, E., Nandariyah, N. and Reflinur, R., 2014. The use of DNA microsatellite markers for genetic diversity identification of soybean (Glycine max (L) Meriil.) as a supplementary method in reference collections management. Indonesian Journal of Biotechnology, 19(2), 136-145, https://doi.org/10.22146/ijbiotech.9306.

Hossain, M., Islam, M.M., Emon, R.M., Rana, M.S., Hossain, M.A., Uddin, M.I., Malek, M.A., Khan, N.A. and Nuruzzaman, M., 2020. Microsatellite-based DNA fingerprinting and genetic analysis of some selected aus rice (Oryza sativa L.) genotypes. Annals of Agricultural and Crop Sciences, 5(3), 1-10.

Mukuze, C., Tukamuhabwa, P., Maphosa, M., Dari, S., Dramadri, I.O., Obua, T., Kongai, H. and Rubaihayo, P., 2020. Genetic diversity analysis among soybean genotypes using SSR markers in Uganda. African Journal of Biotechnology, 19(7), 439-448, https://doi.org/10.5897/ajb2020.17152.

Tasma, I.M. and Arumsari, S., 2020. Genetic diversity analysis of the Cameroon-originated oil palm accessions assessed with SSR markers. Jurnal Penelitian Tanaman Industri, 19(4), 194-202, https://doi.org/10.21082/jlittri.v19n4.2013.194-202.

Dalimunthe, S.R., Siregar, L.A.M., Putri, L.A.P., Chairunnisa, T. and Hairmansis, A., 2020. Polymorphism levels of some SSR markers (Simple Sequence Repeat) for parental line identification on low temperature tolerance. IOP Conference Series: Earth and Environmental Science, 454(1), 1-9, https://doi.org/10.1088/1755-1315/454/1/012165.

Charlesworth, D. and Willis, J.H., 2009. The genetics of inbreeding depression. Nature Reviews Genetics, 10(11), 783-796, https://doi:/10.1038/nrg2664.