Genome Characterization for the Antimicrobial Potential of Streptomyces samsunensis SA31, a Rhizospheric Actinomycete of Cymbopogon citratus (DC) Stapf.
Main Article Content
Abstract
Streptomyces species are promising resources of bioactive compounds that play a vital role in medicinal biotechnology. Streptomyces sp. SA31 was isolated from the rhizospheric soil of Cymbopogon citratus (DC) Stapf. The strain was identified as Streptomyces samsunensis based on genome-based taxonomic analysis. The draft genome of strain SA31 contained 11,850,342 bp with a high percentage of G+C at 71.0% and carried 9,350 predicted protein-encoding sequences (CDSs). Furthermore, the secondary metabolite biosynthesis gene clusters in the genome of strain SA31 were predicted by antiSMASH. In silico analysis showed 71 predicted biosynthetic gene clusters (BGCs) responsible for antimicrobial secondary metabolite synthesis. Most gene clusters were involved in the biosynthesis of polyketide synthase. The genome of strain SA31 harbored seven types of polyketide biosynthesis gene clusters that might be associated with antimicrobial activity. Additionally, the genome of strain SA31 contained unexplored secondary metabolite biosynthesis gene clusters. In vitro antimicrobial assay showed that an ethyl acetate extract from the culture broth of strain SA31 could inhibit the growth of Staphylococcus aureus ATCC 25923, Kocuria rhizophila ATCC 9341, Bacillus subtilis ATCC 6633, Candida albicans ATCC 10231, and Aspergillus flavus IMI 242684, implying that the genome of strain SA31 contained potential BGCs for the production of antimicrobial secondary metabolites and led to the isolation of geldanamycin and 17-O-demethylgeldanamycin. Therefore, it can be proved that the rhizosphere-associated soil of C. citratus (DC) Stapf. is a rich habitat for actinomycetes that are capable of producing promising biologically active compounds.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Anansiriwattana, W., Tanasupawat, S., Amnuoypol, S., & Suwanborirux, K. (2006). Identification and antimicrobial activities of actinomycetes from soils in Samed Island, and geldanamycin from strain PC4 – 3. Thai Journal of Pharmaceutical Sciences, 30, 49-56.
Arai, T., Tamotsu, F., Masa, H., Akihiro, M., & Yuzuru, M. (1975). Culture media for actinomycetes (pp.1-20). The Society for Actinomycetes Japan.
Armalytė, J., Skerniškytė, J., Bakienė, E., Krasauskas, R., Šiugždinienė, R., Kareivienė, V., Kerzienė, S., Klimienė, I., Sužiedėlienė, E., & Ružauskas, M. (2019). Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems. Frontiers in Microbiology, 10, Article 892. https://doi.org/10.3389/fmicb.2019.00892
Asai, A., Hasegawa, A., Ochiai, K., Yamashita, Y., & Mizukami, T. (2000). Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK mediated cell cycle regulation, produced by Streptomyces sp. Journal of Antibiotics, 53(1), 81-83. https://doi.org/10.7164/antibiotics.53.81
Asai, A., Tsujita, T., Sharma, S. V., Yamashita, Y., Akinaga, S., Funakoshi, M., Kobayashi, H., & Mizukami, T. (2004). A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay. Biochemical Pharmacology, 67(2), 227-234.
Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., . . . Zagnitko, O. (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9, Article 75. https://doi.org/10.1186/1471-2164-9-75
Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Colins, M., Colin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S.,… Hopwood, D.A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417(6885), 141-147.
Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics. 58, 1-26.
Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H., & Weber, T. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Research, 49(W1), W29-W35. https://doi.org/10.1093/nar/gkab335
Boudjeko, T., Tchinda, R. A. M., Zitouni, M., Nana, J. A. V. T., Lerat, S., & Beaulieu, C. (2017). Streptomyces cameroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes and Environments, 32(1), 24-31.
Buatong, J., Rukachaisirikul, V., Sangkanu, S., Surup, F., & Phongpaichit, S. (2019). Antifungal metabolites from marine-derived Streptomyces sp. AMA49 against Pyricularia oryzae. Journal of Pure and Applied Microbiology, 13(2), 653-665.
Bunbamrung, N., Intaraudom, C., Dramae, A., Thawai, C., Tadtong, S., Auncharoen, P., & Pittayakhajonwut, P. (2020). Antibacterial, antitubercular, antimalarial and cytotoxic substances from the endophytic Streptomyces sp. TBRC7642. Phytochemistry, 172, 112275.
Campos-Avelar, I., Colas de la Noue, A., Durand, N., Cazals, G., Martinez, V., Strub, C., Fontana, A., & Schorr-Galindo, S. (2021). Aspergillus flavus growth inhibition and aflatoxin B1 decontamination by Streptomyces isolates and their metabolites. Toxins, 13(5), Article 340. https://doi.org/10.3390/toxins13050340
Chutrakul, C., Khaokhajorn, P., Auncharoen, P., Boonruengprapa, T., & Mongkolporn, O. (2013). The potential of a fluorescent-based approach for bioassay of antifungal agents against chili anthracnose disease in Thailand. Bioscience, Biotechnology and Biochemistry, 77, 259-265.
Clermont, N., Legault, G., Lerat, S., & Beaulieu, C. (2010). Effect of biopolymers on geldanamycin production and biocontrol ability of Streptomyces melanosporofaciens strain EF-76. Canadian Journal of Plant Pathology, 32(4), 481-489.
CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3 (3rd ed.). Clinical and Laboratory Standards Institute.
DeBoer, C., Meulman, P. A., Wnuk, R. J., & Peterson, D. H. (1970). Geldanamycin, a new antibiotic. Journal of Antibiotics, 23(9), 442-447.
Duangupama, T., Pittayakhajonwut, P., Intaraudom, C., Suriyachadkun, C., Sirirote, P., He, Y.W., & Thawai, C. (2022). Streptomyces sennicomposti sp. nov., an actinomycete isolated from compost of Senna siamea (Lam.). International Journal of Systematic and Evolutionary Microbiology, 72(4), Article 005320. https://doi.org/10.1099/ijsem.0.005320
Elshahawi, S. I., Cao, H., Shaaban, K. A., Ponomareva, L. V., Subramanian, T., Farman, M. L., Spielmann, H. P., Phillips, G. N., Thorson, J. S., & Singh, S. (2017). Structure and specificity of a permissive bacterial C-prenyltransferase. Nature Chemical Biology, 13(4), 366-368.
Faul, M. M., & Huff, B. E. (2000). Strategy and methodology development for the total synthesis of polyether ionophore antibiotics. Chemical Reviews, 100(6), 2407-2474.
Genilloud, O. (2017). Actinomycetes: still a source of novel antibiotics. Natural Product Reports, 34(10), 1203-1232.
Gislin, D., Sudarsanam, D., Raj, G. A., & Baskar, K. (2018). Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. Journal of Genetic Engineering and Biotechnology, 16(2), 287-294.
Gordon, R. E., Barnett, D. A., Handerhan, J. E., & Pang, C. H. N. (1974). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. International Journal of Systematic Bacteriology, 24, 54-63.
Gui, M., Zhang, M.-X., Wu, W.-H., & Sun, P. (2019). Natural occurrence, bioactivity and biosynthesis of Elaiophylin analogues. Molecules, 24(21), Article 3840. https://doi.org/ 10.3390/molecules24213840
He, W., Lei, J., Liu, Y., & Wang, Y. (2008). The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Archives of Microbiology, 189 (5), 501-510.
Intra, B., Mungsuntisuk, I., Nihira, T., Igarashi, Y., & Panbangred, W. (2011). Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Research Notes, 4(1), Article 98. https://doi.org/10.1186/1756-0500-4-98
Jiang, J., He, X., & Cane, D. E. (2007). Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nature Chemical Biology, 3(11), 711-715.
Kämpfer, P. (2012). Genus Streptomyces. In M. Goodfellow, P. Kämpfer, H.-J. Busse, M. E. Trujillo, K.-I. Suzuki, W. Ludwig, & W. B.
Whitman (Eds.). Bergey’s manual of systematic bacteriology, Vol 5. The Actinobacteria, Part A and B. (2nd ed., pp.1455-1767). Springer.
Karlovsky, P. (2008). Secondary metabolites in soil ecology. In P. Karlovsky (Ed.). Soil biology (pp. 1-19). Springer.
Khamna, S., Yokota, A., & Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 25(4), 649-655.
Klapschinski, T. A., Rabe, P., & Dickschat, J. S. (2016). Pristinol, a sesquiterpene alcohol with an unusual skeleton from Streptomyces pristinaespiralis. Angewandte Chemie International Edition, 55(34), 10141-10144.
Komagata, K., & Suzuki, K.-I. (1988). Lipid and cell-wall analysis in bacterial systematics. In R. R. Colwell and R. Grigorova, eds. Methods in microbiology. Vol 19 (pp. 161-207). Academic Press.
Konstantinidis, K. T., Rosselló-Móra, R., & Amann, R. (2017). Uncultivated microbes in need of their own taxonomy. International Society for Microbial Ecology Journal, 11(11), 2399-2406.
Maiti, S. K., & Kumar, A. (2016). Energy plantations, medicinal and aromatic plants on contaminated soil. In M. N. V. Prasad (Ed.). Bioremediation and Bioeconomy (pp. 29-47). Elsevier. https://doi.org/10.1016/B978-0-12-802830-8.00002-2
Meier-Kolthoff, J. P., & Göker, M. (2019). TYGS is an automated high throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10, Article 2182. https://doi.org/10.1038/s41467-019-10210-3
Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14, 60-73.
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663.
Messaoudi, O., Bendahou, M., Benamar, I., & Abdelwouhid, D. E. (2015). Identification and preliminary characterization of non-polyene antibiotics secreted by new strain of actinomycete isolated from sebkha of Kenadsa, Algeria. Asian Pacific Journal of Tropical Biomedicine, 5(6), 438-445.
Miyairi, N., Sakai, H. I., Konomi, T., & Imanaka, H. (1976). Enterocin, a new antibiotic taxonomy, isolation and characterization. Journal of Antibiotics, 29(3), 227-235.
Nonomura, H., & Ohara, Y. (1969). Distribution of actinomycetes in soil. VI. A culture method effective for both preferential isolation and enumeration of Microbispora and Streptosporangium strains in soil (Part 1). Journal of Fermentation Technology, 47, 463-469.
Oberhofer, M., Hess, J., Leutgeb, M., Gössnitzer, F., Rattei, T., Wawrosch, C., & Zotchev, S. B. (2019). Exploring actinobacteria associated with rhizosphere and endosphere of the native alpine medicinal plant Leontopodium nivale subspecies alpinum. Frontiers in Microbiology, 10, Article 2531. https://doi.org/10.3389/fmicb.2019.02531
Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., & Odelade, K. A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, Article e00137. https://doi.org/10.1016/j.sciaf.2019.e00137
Ōmura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., & Kikuchi, H. (2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences, 98(21), 12215-12220.
Ōmura, S., Nakagawa, A., & Sadakane, N. (1979). Structure of herbimycin, a new ansamycin antibiotic. Tetrahedron Letters, 20(44), 4323-4326.
Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Research, 42(Database issue), D206-D214. https//doi.org/10.1093/nar/gkt1226
Phongsopitanun, W., Thawai, C., Suwanborirux, K., Kudo, T., Ohkuma, M., & Tanasupawat, S. (2014). Streptomyces chumphonensis sp. nov., isolated from marine sediments. International Journal of Systematic and Evolutionary Microbiology, 64, 2605-2610.
Prabhu, J., Schauwecker, F., Grammel, N., Keller, U., & Bernhard, M. (2004). Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Applied and Environmental Microbiology, 70(5), 3130-3132.
Quinn, G. A., Banat, A. M., Abdelhameed, A. M., & Banat, I. M. (2020). Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. Journal of Medical Microbiology, 69(8), 1040-1048.
Rascher, A., Hu, Z., Viswanathan, N., Schirmer, A., Reid, R., Nierman, W. C., Lewis, M., & Hutchinson, C. R. (2003). Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiology Letters, 28(218), 223-230.
Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H., & Hopwood, D. A. (1996). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Molecular Microbiology, 21(1), 77-96.
Richter, M., & Rossello-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America 106(45), 19126-19131.
Richter, M., Rosselló-Móra, R., Oliver-Glöckner, F., & Peplies, J. (2016). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics, 32(6), 929-931.
Rinehart, Jr. K. L., & Shield, L. S. (1976). Chemistry of the ansamycin antibiotics. Fortschritte Der Chemie Organischer Naturstoffe, 33, 231-307.
Rodriguez, R. L. M., & Konstantinidis, K. T. (2014). Bypassing cultivation to identify bacterial species. Microbe, 9(3), 111-118.
Sanusi, N. H., Chia, P. I., & Nordin, N. F. H. (2015). Isolation and identification of rhizospheric bacteria associated with lemongrass for potential bioremediation. Jurnal Teknologi, 77(24), 57-63.
Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42, 321-324.
Sarven, M. S., Hao, Q., Deng, J., Yang, F., Wang, G., Xiao, Y., & Xiao, X. (2020). Biological control of tomato gray mold caused by Botrytis cinerea with the entomopathogenic fungus Metarhizium anisopliae. Pathogens, 9(3), Article 213. https://doi.org/10.3390/pathogens9030213
Sazak, A., Şahin, N., Güven, K., Işık, K., & Goodfellow, M. (2011). Streptomyces samsunensis sp. nov., a member of the Streptomyces violaceusniger clade isolated from the rhizosphere of Robinia pseudoacacia. International Journal of Systematic and Evolutionary Microbiology, 61(6), 1309-1314.
Sharma, P., & Thakur, D. (2020). Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Scientific Reports, 10(1), Article 4104. https://doi.org/10.1038/s41598-020-60968-6
Shin, J. C., Na, Z., Lee, D. H., Kim, W. C., Lee, K., Shen, Y. M., Paik, S. G., Hong, Y. S., & Lee, J. J. (2008). Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427. Journal of Microbiology and Biotechnology, 18(6), 1101-1108.
Shirling, E. T., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic and Evolutionary Microbiology, 16(3), 313-340.
Sun, F., Xu, S., Jiang, F., & Liu, W. (2018). Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Applied Microbiology and Biotechnology, 102(5), 2225-2234.
Supong, K., Suriyachadkun, C., Pittayakhajonwut, P., Suwanborirux, K., & Thawai, C. (2013). Micromonospora spongicola sp. nov., an actinomycete isolated from a marine sponge in the Gulf of Thailand. The Journal of Antibiotics, 66, 505-509. https://doi.org/10.1038/ja.2013.35
Supong, K., Thawai, C., Supothina, S., Auncharoen, P., & Pittayakhajonwut, P. (2016). Antimicrobial and antioxidant activities of quinoline alkaloids from Pseudomonas aeruginosa BCC76810. Phytochemistry Letters, 17, 100-106. https://doi.org/10.1016/j.phytol.2016.07.007
Taechowisan, T., Puckdee, W., & Phutdhawong, W. S. (2019). Streptomyces zerumbet, a novel species from Zingiber zerumbet (L.) Smith and isolation of its bioactive compounds. Advances in Applied Microbiology, 9, 194-219.
Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 44(14), 6614-6624.
Thawai, C., Rungjindamai, N., Klanbut, K., & Tanasupawat, S. (2017). Nocardia xestospongiae sp. nov., isolated from a marine sponge in the Andaman Sea. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1451-1456. https://doi.org/10.1099/ijsem.0.001736
Tohyama, S., Eguchi, T., Dhakal, R. P., Akashi, T., Otsuka, M., & Kakinuma, K. (2004). Genome-inspired search for new antibiotics. Isolation and structure determination of new 28-membered polyketide macrolactones, halstoctacosanolides A and B, from Streptomyces halstedii HC34. Tetrahedron, 60(18), 3999-4005.
UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506-D515. https;//doi.org/10.1093/nar/gky1049
Usuki, Y., Matsumoto, K., Inoue, T., Yoshioka, K., Iio, H., & Tanaka, T. (2006). Structure–activity relationship studies on niphimycin, a guanidylpolyol macrolide antibiotic. Part 1: The role of the N-methyl-N ″-alkylguanidinium moiety. Bioorganic and Medicinal Chemistry Letters, 16(6), 1553-1556.
Wang, X., Reynolds, A. R., Elshahawi, S. I., Shaaban, K. A., Ponomareva, L. V., Saunders, M. A., Elgumati, I. S., Zhang, Y., Copley, G. C., Hower, J. C., & Sunkara, M. (2015). Terfestatins B and C, new p-terphenyl glycosides produced by Streptomyces sp. RM-5–8. Organic Letters, 17(11), 2796-2799.
Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R., Stackebrandt, E. S. M. P., Starr, M. P. & Truper, H.G. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology, 37(4), 463-464.
Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Müller, R., Wohlleben, W., Breitling, R., Takano, E., & Medema, M. H. (2015). antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43(W1), W237-W243. https://doi.org/10.1093/nar/gkv437
Williams, S. T., & Cross, T. (1971). Chapter XI Actinomycetes. In C. Booth (Ed.). Methods in microbiology. Vol 4 (pp. 295-334). Academic Press.
Wolf, F., Bauer, J. S., Bendel, T. M., Kulik, A., Kalinowski, J., Gross, H., & Kaysser, L. (2017). Biosynthesis of the β‐lactone proteasome inhibitors belactosin and cystargolide. Angewandte Chemie International Edition, 56(23), 6665-6668.
Wu, C. Z., Jang, J. H., Ahn, J. S., & Hong, Y. S. (2012). New geldanamycin analogs from Streptomyces hygroscopicus. Journal of Microbiology and Biotechnology, 22(11), 1478-1481.
Xie, Y., Guo, L., Huang, J., Huang, X., Cong, Z., Liu, Q., Wang, Q., Pang, X., Xiang, S., Zhou, X., Liu, Y., Wang, J., & Wang, J. (2021). Cyclopentenone-containing tetrahydroquinoline and geldanamycin alkaloids from Streptomyces malaysiensis as potential anti-androgens against prostate cancer cells. Journal of Natural Products, 84(7), 2004-2011.
Yin, M., Jiang, M., Ren, Z., Dong, Y., & Lu, T. (2017). The complete genome sequence of Streptomyces autolyticus CGMCC 0516, the producer of geldanamycin, autolytimycin, reblastatin and elaiophylin. Journal of Biotechnology, 252, 27-31.
Yin, M., Lu, T., Zhao, L. - X., Chen, Y., Huang, S. X., Lohman, J. R., Xu, L. - H., Jiang, C. L., & Shen, B. (2011). The missing C-17-O-methyltransferase in geldanamycin biosynthesis. Organic Letters, 13(14), 3726-3729.
Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613-1617.
Zheng, Y., Saitou, A., Wang, C.-M., Toyoda, A., Minakuchi, Y., Sekiguchi, Y., Ueda, K., Takano, H., Sakai, Y., Abe, K., Yokota, A., & Yabe, S. (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in Microbiology, 10, Article 893. https://doi.org/10.3389/fmicb.2019.00893