Total Phenolic Content and Antioxidant Capacity from Stems and Leaves of Andrographis paniculate in Different Solvent Combinations

Main Article Content

Novian Liwanda
Annisa Zahra
Khalissa Sekar Amanda Sudarjat
Teti Mulyati
Waras Nurcholis

Abstract

Andrographis paniculata, a member of the Acanthaceae family, is renowned for its secondary metabolites and bioactivity. Optimization of the extraction of these compounds can be achieved by selecting the appropriate solvent. In this research, extraction was carried out using water, acetone, and ethanol as solvents, both individually and in combination. The study aimed to evaluate the total phenolic content (TPC) and antioxidant capacity of the stems and leaves of Andrographis paniculata using solvent extraction. The research employed a completely randomized design with three replications, using dry powder of A. paniculate as the sample. TPC was analyzed using the Folin-Ciocalteu method, while antioxidant capacity was evaluated via the FRAP and ABTS assays. The results showed that the water-acetone solvent (50%:50%) produced the highest TPC (7.4±0.50 mg GAE/g DW) and FRAP antioxidant capacity (41.96±1.11 µmol TE/g DW). The highest antioxidant capacity using the ABTS method was obtained with the ethanol-acetone combination (50%:50%), with a value of 4.26±0.02 mol TE/g DW. A positive correlation between TPC and FRAP antioxidant capacity was observed (r = 0.6821), indicating that the phenolic content of Andrographis paniculata is strongly linked to its FRAP-based antioxidant activity. Overall, the extraction solvent combination significantly influenced the TPC content and antioxidant capacity of Andrographis paniculata stems and leaves.

Article Details

Section
Original Research Articles

References

Adaramola, B., & Onigbinde, A. (2016). Effect of extraction solvent on the phenolic content, flavonoid content and antioxidant capacity of clove bud. IOSR Journal of Pharmaceutical and Biological Sciences, 11(3), 33-38.

Adedapo, A. A, Adeoye, B. O, Sofidiya, M. O., & Oyagbemi, A. A. (2015). Antioxidant, antinociceptive and anti-inflammatory properties of the aqueous and ethanolic leaf extracts of Andrographis paniculata in some laboratory animals. Journal of Basic Clinical Physiology and Pharmacology, 26(4), 327-334. https://doi.org/10.1515/jbcpp-2014-0051

Akbar, S. (2011). Andrographis paniculata: A review of pharmacological activities and clinical effects. Alternative Medicine Review, 16, 66-77.

Al-Hmoud, H. A., Ibrahim, N. E., & El-Hallous, E. I. (2014). Surfactants solubility, concentration and the other formulations effects on the drug release rate from a controlled-release matrix. African Journal of Pharmacy and Pharmacology, 8(13), 364-371. https://doi.org/10.5897/AJPP2013

Assami, K., Pingret D., Chemat S., Meklaty B. Y., & Chemat, F. (2012). Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L seeds. Chemical Engineering and Processing: Process Intensification, 62, 99-105. https:doi.org/10.1016/j.cep.2012.09.003

Atere, T. G., Akinloye, O. A., Ugbaja, R. N., Ojo, D. A., & Dealtry, G. (2018). In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Science and Human Wellness, 7(4), 266-272. https://doi.org/10.1016/j.fshw.2018.09.004

Benoy, G. K., Animesh, D. K., Aninda, M., Priyanka, D. K., & Sandip, H. (2012). An overview on Andrographis paniculata (Burm. F.) Nees. International Journal of Research in Ayurveda & Pharmacy, 3, 752-760.

Boeing, J. S., Barizao, E. O., Silva, B. C., Montanher, P. F., Almeida, V. C., & Visentainer J. V. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8(48), 1-9. https://doi.org/10.1186/s13065-014-0048-1

Calvindi, J., Syukur, M., & Nurcholis, W. (2020). Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas Journal of Biological Diversity, 21(6), 2420-2424. https://doi.org/10.13057/biodiv/d210612

Dey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of b -carotene from Spirulina platensis. Ultrasonics-Sonochemistry, 20(1), 271-276.

Gliszczyńska-Świgło, A. (2006). Antioxidant activity of water-soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chemistry, 96(1), 131-136. https://doi.org/10.1016/j.foodchem.2005.02.018

Hossain, M. S., & Urbi, Z. (2016). Effect of naphthalene acetic acid on the adventitious rooting in shoot cuttings of Andrographis paniculata (Burm.f.) Wall. ex Nees: an important therapeutical herb. International Journal of Agronomy, 2016, 1-6. https://doi.org/10.1155/2016/1617543

Hossain, M. S., Urbi, Z., Sule, A., & Rahman, K. M. H. (2014). Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology, The Scientific World Journal, 2014, Article 274905. https://doi.org/ 10.1155/2014/274905.

Ilyasov, I. R., Beloborodov, V. L., Selivanova, I. A., & Terekhov, R. P. (2020). ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences, 21(3), Article 1131. https://doi.org/10.3390/ijms21031131

Kumar, A., Dora, J., Singh, A., & Tripathi, R. (2012). A review on the king of bitter (Kalmegh). International Journal of Research in Pharmacy and Chemistry, 2(1), 116-124.

Liu, Y., Zhang, H., & Wei, S. (2015). Ultrasonic-assisted extraction of pigments from Hylocereus undatus flowers: optimization, antioxidant activity, and HPLC analysis. Royal Society of Chemistry Advances, 5(58), 46598-46607. https://doi.org/10.1039/C5RA04089B

Ma, T., Sun, X., Tian, C., Luo, J., Zheng, C., & Zhan, J. (2016). Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology. International Journal of Biological Macromolecules, 88, 162-170. https://doi.org/10.1016/j.ijbiomac.2016.03.058

Majhi, R., Maharjan, R., Shrestha, M., Mali, A., Basnet, A., Baral, M., Duwal, R., Manandhar, R., & Rajbhandari, P. (2023). Effect of altitude and solvent on Psidium guajava Linn. leaves extracts: phytochemical analysis, antioxidant, cytotoxicity and antimicrobial activity against food spoilage microbes. BMC Chemistry, 17, Article 36. https://doi.org/10.1186/s13065-023-00948-9

Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76.

Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16, Article 48. https://doi.org/10.1186/s13065-022-00841-x

Müller, L., Fröhlich, K., & Böhm, V. (2011). Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129(1), 139-148. https://doi.org/10.1016/j.foodchem.2011.04.045

Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), Article 3380. https://doi.org/10.3390/ijms22073380

Nakatani, N. (2000). Phenolic antioxidants from herbs and spices. Biofactors, 13(1-4), 141-146.

Ngo, T., Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V. (2017). Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, 2017, 1-8. https://doi.org/10.1155/2017/9305047

Nurcholis, W., Alfadzrin, R., Izzati, N., Arianti, R., Vinnai, B. Á., Sabri, F., Kristóf, E., & Artika, I. M. (2022). Effects of methods and durations of extraction on total flavonoid and phenolic contents and antioxidant activity of Java Cardamom (Amomum compactum Soland Ex Maton) Fruit. Plants, 11(17), 1-13. https://doi.org/10.3390/plants11172221

Okhuarobo, A., Falodun, J.E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014). Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical Disease, 4(3), 213-222. https://doi.org/10.1016/S2222-1808(14)60509-0

Prior, R. L., Hoang, H. A., Gu, L., Wu, X., Bacchiocca, M., Howard, L., & Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. Journal of Agricultural and Food Chemistry, 51(11), 3273-3279. https://doi.org/10.1021/jf0262256

Raharjo, D., & Haryoto, H. (2019). Antioxidant activity of mangrove Sonneratia caseolaris L using the FRAP method. Proceedings of the international summit on science technology and humanity (pp. 623-629). Surakarta.

Rajhard, S., Hladnik, L., Vicente, F. A., Srčič, S., Grilc, M., & Likozar, B. (2021). Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying ftir/hplc. Processes, 9(11), Article 1952. https://doi.org/10.3390/pr9111952

Rocha, J. D. C. G., Procópio, F. R., Mendonça, A. C., Vieira, L. M., Perrone, Í. T., Barros, F. A. R. D., & Stringheta, P. C. (2017). Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Science and Technology (Campinas), 38(1), 45-53. https://doi.org/10.1590/1678-457X.36316

Salomon, S., Sevilla, O., Betancourt, R., Romero, A., Nuevas-Paz, L., & Acosta-Esquijarosa, J. (2014). Extraction of mangiferin from Mangifera indica L. leaves using microwave assisted technique. Emirates Journal of Food & Agriculture, 26(7), 616-622. https://doi.org/10.9755/ejfa.v26i7.18188

Sivananthan, M. (2013). Pharmacological activities of Andrographis paniculata, Allium sativum and Adhatoda vasica. International Journal of Biomolecules and Biomedicine, 3(2), 13-20.

Sukweenadhi, J., Yunita, O., Setiawan, F., Siagian, M. T., Danduru, A. P., & Avanti, C. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas Journal of Biological Diversity, 21(5), 2062-2067. https://doi.org/10.13057/biodiv/d210532

Sule, A., Ahmed, Q. U., Samah, O. A., & Omar, M. N. (2011). Bacteriostatic and bactericidal activities of Andrographis paniculata extracts on skin disease causing pathogenic bacteria. Journal of Medical Plants Research, 5(1), 7-14.

Wootton-Beard, P. C., Moran, A., & Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and folin-ciocalteu methods. Food Research International, 44(1), 217-224. https://doi.org/10.1016/j.foodres.2010.10.033

Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198-202. https://doi.org/ 10.1016/j.micpath.2018.08.034

Zhang, H., Yang, Y.-F., & Zhou, Z.-Q. (2018). Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 17, 256-263. https://doi.org/10.1016/S2095-3119(17)61664-2

Zhuang, B., Ramanauskaite, G., Koa, Z. Y., & Wang, Z.-G. (2021). Like dissolves like: A first-principles theory for predicting liquid miscibility and mixture dielectric constant. Science advances, 7(7), Article eabe7275. https://doi.org/10.1126/sciadv.abe7275