Computational Investigation of Phytochemicals as Putative Inhibitors of Vibrio parahaemolyticus Protein Toxins
Main Article Content
Abstract
The lethal toxins released by pathogenic strains of V. parahaemolyticus pose a significant challenge in the aquaculture industry. One such toxin is thermostable direct haemolysin (TDH), which is encoded in the tdh gene. TDH primarily exerts its toxicity by creating pores in hemocyte membranes and other tissues. The toxR gene, on the other hand, plays a role in regulating the expression of virulence factors, including tdh, and is found in Vibrio species. Plants are recognized for containing phytochemicals that exhibit antibacterial properties with few adverse effects. This study acquired essential phytochemicals from PubChem, and target proteins from the RCSB protein data bank. The study was focused on the effects of alkaloids and flavonoid classes of phytochemicals on the target toxins measured by in silico (Gscore and MM/GBSA bind) investigation. This research employed in silico screening using Schrodinger's Glide, 2021 software, followed by a thorough analysis of how different phytochemicals interacted with specific binding sites, utilizing the Discovery Studio 3.5 version. Through this analysis, the most effective phytochemicals were identified, and myricetin (Myr) and (+)-taxifolin (TF) with ToxR, as well as chlorogenic acid (CGA) and carboxymethyl cellulose (CMC) with TDH, were analyzed. These phytochemicals displayed promising potential as inhibitors of the toxins, as evidenced by their docking scores and affinity. Among the compounds, Myr exhibited the best G-docking score at -6.004 Kcal/mol, followed by TF at -5.262 Kcal/mol against ToxR. Whereas, CGA and CMC also demonstrated notable scores at -5.245 Kcal/mol and -4.433 Kcal/mol against TDH, respectively. The in silico analysis suggested that these phytocompounds might have strong antibacterial properties against V. parahaemolyticus by effectively neutralizing these toxins. The screening results revealed several phytochemicals with promising docking scores and significant interactions with these toxins.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ahmed, J., Navabshan, I., Unnikrishnan, S., Radhakrishnan, L., Vasagam, K. P. K., & Ramalingam, K. (2023). In silico and in vitro investigation of phytochemicals against shrimp AHPND syndrome causing PirA/B toxins of Vibrio parahaemolyticus. Applied Biochemistry and Biotechnology, 195(12), 7176-7196. https://doi.org/10.1007/s12010-023-04458-1
Alam, M. J., Miyoshi, S. I., & Shinoda, S. (2003). Studies on pathogenic Vibrio parahaemolyticus during a warm weather season in the Seto Inland Sea, Japan. Environmental Microbiology, 5(8), 706-710. https://doi.org/10.1046/j.1462-2920.2003.00458.x
Ali, E. A., Al-azeem, M. W. A., & Younis, W. (2023). Microbiological and molecular characterization of Vibrio cholera and Vibrio parahaemolyticus isolated from Tilapia fish (Oreochromis niloticus). SVU-International Journal of Veterinary Sciences, 6(3), 1-16. https://doi.org/10.21608/svu.2023.203762.1266
Azam, S. S., Uddin, R., & Wadood, A. (2012). Structure and dynamics of alpha-glucosidase through molecular dynamics simulation studies. Journal of Molecular Liquids, 174, 58-62. https://doi.org/10.1016/j.molliq.2012.07.003
Canals, A., Pieretti, S., Muriel-Masanes, M., Yaman, N. E., Plecha, S. C., Thomson, J. J., Fàbrega-Ferrer, M., Pérez-Luque, R., Krukonis, E. S., & Coll, M. (2023). ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites. Proceedings of the National Academy of Sciences, 120(29), Article e2304378120. https://doi.org/10.1073/pnas.2304378120
Cao, H., Li, X., Wang, F., Zhang, Y., Xiong, Y., & Yang, Q. (2020). Phytochemical-mediated glioma targeted treatment: drug resistance and novel delivery systems. Current Medicinal Chemistry, 27(4), 599-629. https://doi.org/10.2174/0929867326666190809221332
Cohen, H., Fridman, C. M., Gerlic, M., & Salomon, D. (2023). A Vibrio T6SS-mediated lethality in an aquatic animal model. Microbiology Spectrum, 11(4), Article 0109323. https://doi.org/10.1128/spectrum.01093-23
Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., Khakpour, M., & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606-613. https://doi.org/10.1016/j.ijbiomac.2014.09.006
DePaola, A., Kaysner, C. A., Bowers, J., & Cook, D. W. (2000). Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). Applied and Environmental Microbiology, 66(11), 4649-4654. https://doi.org/10.1128/AEM.66.11.4649-4654.2000
Di Salvo, E., Panebianco, F., Panebianco, A., & Ziino, G. (2023). Quantitative detection of viable but nonculturable Vibrio parahaemolyticus in frozen bivalve molluscs. Foods, 12(12), Article 2373. https://doi.org/10.3390/foods12122373
Díaz-Hernández, G. C., Alvarez-Fitz, P., Maldonado-Astudillo, Y. I., Jiménez-Hernández, J., Parra-Rojas, I., Flores-Alfaro, E., Salazar, R., & Ramírez, M. (2022). Antibacterial, antiradical and antiproliferative potential of green, roasted, and spent coffee extracts. Applied Sciences, 12(4), Article 1938. https://doi.org/10.3390/app12041938
El-Gamal, A. M., & EL-Bahi, E. F. (2020). Prevalence of Vibrio parahaemolyticus in seabass (Dicentrarchus labrax) and seabream (Sparus aurata) and detection of streptomycin-resistant strains. World Veterinary Journal, 10(3), 325-331.
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384-13421. https://doi.org/10.3390/molecules200713384
Ferruzzi, M. G. (2010). The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiology and Behavior, 100(1), 33-41. https://doi.org/10.1016/j.physbeh.2010.01.035
Flores-Castañón, N., Sarkar, S., & Banerjee, A. (2022). Structural, functional, and molecular docking analyses of microbial cutinase enzymes against polyurethane monomers. Journal of Hazardous Materials Letters, 3, Article 100063. https://doi.org/10.1016/j.hazl.2022.100063
Hazra, B., Sarkar, R., Biswas, S., & Mandal, N. (2010). The antioxidant, iron chelating and DNA protective properties of 70% methanolic extract of' Katha'(Heartwood extract of Acacia catechu). Journal of Complementary and Integrative Medicine, 7(1). https://doi.org/10.2202/1553-3840.1335
Hengphasatporn, K., Garon, A., Wolschann, P., Langer, T., Yasuteru, S., Huynh, T. N., Chavasiri, W., Saelee, T., Boonyasuppayakorn, S., & Rungrotmongkol, T. (2020). Multiple virtual screening strategies for the discovery of novel compounds active against dengue virus: A hit identification study. Scientia Pharmaceutica, 88(1), Article 2. https://doi.org/10.3390/scipharm88010002
Huang, Y., Chen, H., Zhou, X., Wu, X., Hu, E., & Jiang, Z. (2017). Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice. European Journal of Pharmacology, 809, 191-195. https://doi.org/10.1016/j.ejphar.2017.04.017
Hubbard, T. P., Chao, M. C., Abel, S., Blondel, C. J., Abel zur Wiesch, P., Zhou, X., Davis, B.M., & Waldor, M. K. (2016). Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proceedings of the National Academy of Sciences, 113(22), 6283-6288. https://doi.org/10.1073/pnas.1601718113
Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all‐atom protein loop prediction. Proteins: Structure, Function, and Bioinformatics, 55(2), 351-367. https://doi.org/10.1002/prot.10613
Johnson, C. N., Flowers, A. R., Young, V. C., Gonzalez-Escalona, N., DePaola, A., Noriea, N. F., & Grimes, D. J. (2009). Genetic relatedness among tdh+ and trh+ Vibrio parahaemolyticus cultured from Gulf of Mexico oysters (Crassostrea virginica) and surrounding water and sediment. Microbial Ecology, 57, 437-443. https://doi.org/10.1007/s00248-008-9418-3
Kodama, T., Hiyoshi, H., Gotoh, K., Akeda, Y., Matsuda, S., Park, K. S., Cantarelli, V. V., Iida, T., & Honda, T. (2008). Identification of two translocon proteins of Vibrio parahaemolyticus type III secretion system 2. Infection and Immunity, 76(9), 4282-4289. https://doi.org/10.1128/iai.01738-07
Lakshmi, T., Roy, A., & George, R. S. (2021). Antibacterial activity of Acacia catechu seed against urinary tract pathogens. Journal of Complementary Medicine Research, 11(5), 123-123.
Liang, F., Sun, C., Li, S., Hou, T., & Li, C. (2021). Therapeutic effect and immune mechanism of chitosan-gentamicin conjugate on Pacific white shrimp (Litopenaeus vannamei) infected with Vibrio parahaemolyticus. Carbohydrate Polymers, 269, Article 118334. https://doi.org/10.1016/j.carbpol.2021.118334
Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76(6), M398-M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375. https://doi.org/10.1016/j.carbpol.2007.09.002
Matlawska-Wasowska, K., Finn, R., Mustel, A., O'Byrne, C. P., Baird, A. W., Coffey, E. T., & Boyd, A. (2010). The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis. BMC Microbiology, 10, Article 329. https://doi.org/10.1186/1471-2180-10-329
Okada, N., Iida, T., Park, K. S., Goto, N., Yasunaga, T., Hiyoshi, H., Matsuda, S., Kodama, T., & Honda, T. (2009). Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infection and Immunity, 77(2), 904-913. https://doi.org/10.1128/iai.01184-08
Osei-Adjei, G., Gao, H., Zhang, Y., Zhang, L., Yang, W., Yang, H., Yin, Z., Huang, X., Zhang, Y., & Zhou, D. (2017). Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget, 8(39), 65809-65822. https://doi.org/10.18632/oncotarget.19498
Panwar, S., Kumari, S., Verma, J., Bakshi, S., Narendrakumar, L., Paul, D., & Das, B. (2023). Toxin-linked mobile genetic elements in major enteric bacterial pathogens. Gut Microbiome, 4, Article e5. https://doi.org/10.1017/gmb.2023.2
Paria, P., Kunal, S. P., Behera, B. K., Mohapatra, P. K. D., Das, A., Parida, P. K., & Das, B. K. (2019). Molecular characterization and genetic diversity study of Vibrio parahaemolyticus isolated from aquaculture farms in India. Aquaculture, 509, 104-111. https://doi.org/10.1016/j.aquaculture.2019.04.076
Park, K. S., Chong, Y., & Kim, M. K. (2016). Myricetin: biological activity related to human health. Applied Biological Chemistry, 59, 259-269. https://doi.org/10.1007/s13765-016-0150-2
Piplani, P., Sharma, M., Mehta, P., & Malik, R. (2018). N-(4-Hydroxyphenyl)-3, 4, 5-trimethoxybenzamide derivatives as potential memory enhancers: Synthesis, biological evaluation and molecular simulation studies. Journal of Biomolecular Structure and Dynamics, 36 (7), 1867-1877. https://doi.org/10.1080/07391102.2017.1336943
Prithvisagar, K.S., Krishna Kumar, B., Kodama, T., Rai, P., Iida, T., Karunasagar, I., & Karunasagar, I. (2021). Whole genome analysis unveils genetic diversity and potential virulence determinants in Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Virulence, 12(1), 1936-1949. https://doi.org/10.1080/21505594.2021.
Raj, U., & Varadwaj, P. K. (2016). Flavonoids as multi-target inhibitors for proteins associated with Ebola virus: In silico discovery using virtual screening and molecular docking studies. Interdisciplinary Sciences: Computational Life Sciences, 8, 132-141. https://doi.org/10.1007/s12539-015-0109-8
Rajagopal, K., Byran, G., Jupudi, S., & Vadivelan, R. (2020). Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): an in silico approach. International Journal of Health Allied Science, 9(5), 43-50.
Rajagopal, K., Varakumar, P., Aparna, B., Byran, G., & Jupudi, S. (2021). Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation, and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 39(15), 5551-5562.
Rohl, C. A., Strauss, C. E., Misura, K. M., & Baker, D. (2004). Protein structure prediction using Rosetta. In Methods in enzymology. Vol. 383 (pp. 66-93). Academic Press. https://doi.org/10.1016/S0076-6879(04)83004-0
Sajid Jamal, Q. M., Alharbi, A. H., & Ahmad, V. (2022). Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 40(17), 7960-7974. https://doi.org/10.1080/07391102.2021.1905551
Semwal, D. K., Semwal, R. B., Combrinck, S., & Viljoen, A. (2016). Myricetin: A dietary molecule with diverse biological activities. Nutrients, 8(2), Article 90. https://doi.org/10.3390/nu8020090
Simpson, C. C. (2023). Type VI secretion system facilitates intraspecies killing in Vibrio vulnificus via the associated rhs toxin/antitoxin system. [MSc. Thesis, George Mason University] George Mason University. http://hdl.handle.net/1920/13316
Soto-Rodriguez, S. A., Lozano-Olvera, R., Montfort, G. R.-C., Zenteno, E., Sánchez-Salgado, J. L., Vibanco-Pérez, N., & Rendón, K. G. A. (2022). New insights into the mechanism of action of PirAB from Vibrio Parahaemolyticus. Toxins, 14(4), Article 243. https://doi.org/10.3390/toxins14040243
Trishala, A., Lakshmi, T., Rajeshkumar, S., Gurunathan, D., Geetha, R. V., & Roy, A. (2019). Physicochemical profile of Acacia catechu bark extract-An invitro study. Indian Journal of Public Health Research & Development, 10(11), 3513-3517.
Yadav, H., Mahalvar, A., Pradhan, M., Yadav, K., Sahu, K. K., & Yadav, R. (2023). Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment. Medicine in Drug Discovery, 17, Article 100151. https://doi.org/10.1016/j.medidd.2023.100151
Yang, Q., Dong, X., Xie, G., Fu, S., Zou, P., Sun, J., Wang, Y., & Huang, J., 2019. Comparative genomic analysis unravels the transmission pattern and intra-species divergence of acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus strains. Molecular Genetics and Genomics, 294, 1007-1022. https://doi.org/10.1007/s00438-019-01559-7
Zhang, Q., Zhao, Y., Zhang, M., Zhang, Y., Ji, H., & Shen, L. (2021). Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. Journal of Pharmaceutical Analysis, 11(5), 555-563. https://doi.org/10.1016/j.jpha.2020.10.002
Zhang, Y., Gao, H., Osei-Adjei, G., Zhang, Y., Yang, W., Yang, H., Yin, Z., Huang, X., & Zhou, D. (2017). Transcriptional regulation of the type VI secretion system 1 genes by quorum sensing and ToxR in Vibrio parahaemolyticus. Frontiers in Microbiology, 8, Article 2005. https://doi.org/10.3389/fmicb.2017.02005