Protein Folding in the Presence of Osmolytes - a Complex Interplay of Multiple Forces

Main Article Content

Vandhana Srinivasan
Ajirni Rajendran
Sheeza Khan

Abstract

 Living organisms employ various approaches to evade stressful environmental conditions such as high and low temperatures, salinity, and drought. The most adapted strategy to circumvent such stress conditions is the use of osmolytes, which are low molecular weight organic compounds. A large amount of evidence clearly demonstrates the role of osmolytes in conferring stability to proteins. Much is now known about the interaction mechanisms that exists between osmolytes and proteins. Osmolytes exert their effect on protein stability by acting on the thermodynamic equilibrium, ‘native conformation ↔ denatured conformation’ in the reverse direction. There are various forces that osmolytes interact with proteins to make such an effect on this equilibrium. The preferential hydration phenomenon is most accepted for the explanation of protein folding in the presence of osmolytes. The unfavorable interaction between the peptide backbone and osmolyte molecules has been understood to be the driving force for the preferential hydration effect. Contrary to this, the stabilization of proteins induced by polyols is solvophobic in nature. Numerous other models have been devised to explain the interactions between proteins and osmolytes at the atomic level. In this review, we systematically reviewed all major forces involved in osmolyte-protein interactions.

Article Details

Section
Review Ariticle

References

Alber, T. (1989). Mutational effects on protein stability. Annual Review of Biochemistry, 58(1), 765-792. https://doi.org/10.1146/annurev.bi.58.070189.004001

Alonso, D. O., Dill, K. A., & Stigter, D. (1991). The three states of globular proteins: acid denaturation. Biopolymers: Original Research on Biomolecules, 31(13), 1631-1649. https://doi.org/10.1002/bip.360311317

Anjum, F., Rishi, V., & Ahmad, F. (2000). Compatibility of osmolytes with Gibbs energy of stabilization of proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1476(1), 75-84. https://doi.org/10.1016/S0167-4838(99)00215-0

Arakawa, T., & Timasheff, S. N. (1984). Protein stabilization and destabilization by guanidinium salts. Biochemistry, 23(25), 5924-5929. https://doi.org/10.1021/bi00320a005

Arakawa, T., & Timasheff, S. N. (1985). Mechanism of polyethylene glycol interaction with proteins. Biochemistry, 24(24), 6756-6762. https://doi.org/10.1021/bi00345a005

Arakawa, T., Bhat, R., & Timasheff, S. N. (1990a). Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 29(7), 1924-1931. https://doi.org/10.1021/bi00459a037

Arakawa, T., Bhat, R., & Timasheff, S. N. (1990b). Preferential interactions determine protein solubility in three-component solutions: the magnesium chloride system. Biochemistry, 29(7), 1914-1923. https://doi.org/10.1021/bi00459a036

Attri, P., Venkatesu, P., & Lee, M. J. (2010). Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin. The Journal of Physical Chemistry B, 114(3), 1471-1478. https://doi.org/10.1021/jp9092332

Auton, M., Bolen, D. W., & Rösgen, J. (2008). Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, aminoacids, and peptides. Proteins: Structure, Function, and Bioinformatics, 73(4), 802-813. https://doi.org/10.1002/prot.22103

Auton, M., Ferreon, A. C. M., & Bolen, D. W. (2006). Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal. Journal of Molecular Biology, 361(5), 983-992. https://doi.org/10.1016/j.jmb.2006.07.003

Bagnasco, S., Balaban, R., Fales, H. M., Yang, Y. M., & Burg, M. (1986). Predominant osmotically active organic solutes in rat and rabbit renal medullas. Journal of Biological Chemistry, 261(13), 5872-5877. https://doi.org/10.1016/S0021-9258(17)38464-8

Baskakov, I., & Bolen, D. W. (1998). Forcing thermodynamically unfolded proteins to fold. Journal of Biological Chemistry, 273(9), 4831-4834. https://doi.org/10.1074/jbc.273.9.4831

Baskakov, I. V., Kumar, R., Srinivasan, G., Ji, Y. S., Bolen, D. W., & Thompson, E. B. (1999). Trimethylamine N-oxide-induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human glucocorticoid receptor. Journal of Biological Chemistry, 274(16), 10693-10696. https://doi.org/10.1074/jbc.274.16.10693

Baskakov, I., Wang, A., & Bolen, D. W. (1998). Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis. Biophysical Journal, 74(5), 2666-2673. https://doi.org/10.1016/S0006-3495(98)77972-X

Bellezza, F., Cipiciani, A., Cinelli, S., & Onori, G. (2009). Influence of alcohols and osmolytes on thermal stability and catalytic activity of myoglobin: Co-solvent clustering effects. Chemical Physics Letters, 482(1-3), 139-142. https://doi.org/10.1016/j.cplett.2009.09.103

Berlow, R. B., Dyson, H. J., & Wright, P. E. (2018). Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. Journal of Molecular Biology, 430(16), 2309-2320. https://doi.org/10.1016/j.jmb.2018.04.003

Betz, S. F. (1993). Disulfide bonds and the stability of globular proteins. Protein Science, 2(10), 1551-1558. https://doi.org/10.1002/pro.5560021002

Bhat, R., & Timasheff, S. N. (1992). Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Science, 1(9), 1133-1143. https://doi.org/10.1002/pro.5560010907

Bhat, M. Y., Singh, L. R., & Dar, T. A. (2017). Trimethylamine N-oxide abolishes the chaperone activity of α-casein: an intrinsically disordered protein. Scientific Reports, 7(1), Article 6572. https://doi.org/10.1038/s41598-017-06836-2

Blose, J. M., Pabit, S. A., Meisburger, S. P., Li, L., Jones, C. D., & Pollack, L. (2011). Effects of a protecting osmolyte on the ion atmosphere surrounding DNA duplexes. Biochemistry, 50(40), 8540-8547. https://doi.org/10.1021/bi200710m

Bolen, D. W. (2004). Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization. Methods, 34(3), 312-322. https://doi.org/10.1016/j.ymeth.2004.03.022

Bolen, D. W., & Baskakov, I. V. (2001). The osmophobic effect: natural selection of a thermodynamic force in protein folding. Journal of Molecular Biology, 310(5), 955-963. https://doi.org/10.1006/jmbi.2001.4819

Bolen, D. W., & Rose, G. D. (2008). Structure and energetics of the hydrogen-bonded backbone in protein folding. Annual Review of Biochemistry, 77, 339-362. https://doi.org/10.1146/annurev.biochem.77.061306.131357

Borowitzka, L. J., & Brown, A. D. (1974). The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella: the role of glycerol as a compatible solute. Archives of Microbiology, 96, 37-52. https://doi.org/10.1007/BF00590161

Borwankar, T., Röthlein, C., Zhang, G., Techen, A., Dosche, C., & Ignatova, Z. (2011). Natural osmolytes remodel the aggregation pathway of mutant huntingtin exon 1. Biochemistry, 50(12), 2048-2060. https://doi.org/10.1021/bi1018368

Bowlus, R. D., & Somero, G. N. (1979). Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end‐products of anaerobic metabolism in marine invertebrates. Journal of Experimental Zoology, 208(2), 137-151. https://doi.org/10.1002/jez.1402080202

Braxton, S. (1996). Protein engineering for stability. In C. S. Craik & J. L. Cleland (Eds.). Protein engineering: Principles and parctice (pp. 299-316). Wiley-Liss, Inc.

Brown, A. D., & Simpson, J. R. (1972). Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Microbiology, 72(3), 589-591.

Burg, M. B., Kwon, E. D., & Peters, E. M. (1996). Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase. Kidney International Supplement, (57), S100-S104.

Burg, M. B., Peters, E. M., Bohren, K. M., & Gabbay, K. H. (1999). Factors affecting counteraction by methylamines of urea effects on aldose reductase. In Proceedings of the National Academy of Sciences, 96(11), 6517-6522. https://doi.org/10.1073/pnas.96.11.6517

Carpenter, J. F., Pikal, M. J., Chang, B. S., & Randolph, T. W. (1997). Rational design of stable lyophilized protein formulations: some practical advice. Pharmaceutical Research, 14(8), 969-975. https://doi.org/10.1023/A:1012180707283

Chang, B. S., Beauvais, R. M., Arakawa, T., Narhi, L. O., Dong, A., Aparisio, D. I., & Carpenter, J. F. (1996). Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution. BiophysicalJjournal, 71(6), 3399-3406. https://doi.org/10.1016/S0006-3495(96)79534-6

Chi, E. Y., Krishnan, S., Randolph, T. W., & Carpenter, J. F. (2003). Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharmaceutical Research, 20, 1325-1336. https://doi.org/10.1023/A:1025771421906

Clark, M. E. (1985). The osmotic role of amino acids: discovery and function. In R. Gilles & M. Baillien (Eds.). Transport Processes, Iono-and Osmoregulation. Proceedings in Life Science (pp. 412-423). Springer. https://doi.org/10.1007/978-3-642-70613-4_35

Clarke, J., Henrick, K., & Fersht, A. R. (1995). Disulfide mutants of barnase I: changes in stability and structure assessed by biophysical methods and X-ray crystallography. Journal of Molecular Biology, 253(3), 493-504. https://doi.org/10.1006/jmbi.1995.0568

Creighton, T. E. (1993). Proteins: structures and molecular properties. Macmillan.

Crowe, J. H., Hoekstra, F. A., & Crowe, L. M. (1992). Anhydrobiosis. Annual Review of Physiology, 54(1), 579-599. https://doi.org/10.1146/annurev.ph.54.030192.003051

Darling, A. L., & Uversky, V. N. (2018). Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Frontiers in Genetics, 9, Article 364736. https://doi.org/10.3389/fgene.2018.00158

Das, R. K., Crick, S. L., & Pappu, R. V. (2012). N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. Journal of Molecular Biology, 416(2), 287-299. https://doi.org/10.1016/j.jmb.2011.12.043

Davis-Searles, P. R., Morar, A. S., Saunders, A. J., Erie, D. A., & Pielak, G. J. (1998). Sugar-induced molten-globule model. Biochemistry, 37(48), 17048-17053. https://doi.org/10.1021/bi981364v

Davis-Searles, P. R., Saunders, A. J., Erie, D. A., Winzor, D. J., & Pielak, G. J. (2001). Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annual Review of Biophysics and Biomolecular Structure, 30(1), 271-306. https://doi.org/10.1146/annurev.biophys.30.1.271

Desmond, M. K., & Siebenaller, J. F. (2006). Non-additive counteraction of KCl-perturbation of lactate dehydrogenase by trimethylamine N-oxide. Protein and Peptide Letters, 13(6), 555-557. https://doi.org/10.2174/092986606777145733

Diamant, S., Eliahu, N., Rosenthal, D., & Goloubinoff, P. (2001). Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Journal of Biological Chemistry, 276(43), 39586-39591. https://doi.org/10.1074/jbc.M103081200

Dill, K. A., & Stigter, D. (1995). Modeling protein stability as heteropolymer collapse. Advances in Protein Chemistry, 46, 59-104. https://doi.org/10.1016/S0065-3233(08)60332-0

Dong, A., Prestrelski, S. J., Allison, S. D., & Carpenter, J. F. (1995). Infrared spectroscopic studies of lyophilization‐and temperature‐induced protein aggregation. Journal of Pharmaceutical Sciences, 84(4), 415-424. https://doi.org/10.1002/jps.2600840407

Dunbar, J., Yennawar, H. P., Banerjee, S., Luo, J., & Farber, G. K. (1997). The effect of denaturants on protein structure. Protein Science, 6(8), 1727-1733. https://doi.org/10.1002/pro.5560060813

Ellis, R. J. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Current Opinion in Structural Biology, 11(1), 114-119. https://doi.org/10.1016/S0959-440X(00)00172-X

Ellis, R. J., & Minton, A. P. (2003). Join the crowd. Nature, 425(6953), 27-28. https://doi.org/10.1038/425027a

Fahey, R. C., Hunt, J. S., & Windham, G. C. (1977). On the cysteine and cystine content of proteins: differences between intracellular and extracellular proteins. Journal of Molecular Evolution, 10, 155-160. https://doi.org/10.1007/BF01751808

Fersht, A. R. (1997). Nucleation mechanisms in protein folding. Current Opinion in Structural Biology, 7(1), 3-9. https://doi.org/10.1016/S0959-440X(97)80002-4

Fulton, A. B. (1982). How crowded is the cytoplasm? Cell, 30(2), 345-347.

Garcia-Perez, A., & Burg, M. B. (1990). Importance of organic osmolytes for osmoregulation by renal medullary cells. Hypertension, 16(6), 595-602. https://doi.org/10.1161/01.HYP.16.6.595

Gekko, K., & Timasheff, S. N. (1981). Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry, 20(16), 4667-4676. https://doi.org/10.1021/bi00519a023

Griko, Y. V., Makhatadze, G. I., Privalov, P. L., & Hartley, R. W. (1994). Thermodynamics of barnase unfolding. Protein Science, 3(4), 669-676. https://doi.org/10.1002/pro.556003041

Hagedorn, M., Carter, V. L., Ly, S., Andrell, R. M., Yancey, P. H., Leong, J. A. C., & Kleinhans, F. W. (2010). Analysis of internal osmolality in developing coral larvae, Fungia scutaria. Physiological and Biochemical Zoology, 83(1), 157-166. https://doi.org/10.1086/648484

Hamaguchi, K., & Kurono, A. (1963). Structure of muramidase (lysozyme): I. The effect of guanidine hydrochloride on muramidase. The Journal of Biochemistry, 54(2), 111-122.

Haque, I., Singh, R., Ahmad, F., & Moosavi-Movahedi, A. A. (2005a). Testing polyols’ compatibility with Gibbs energy of stabilization of proteins under conditions in which they behave as compatible osmolytes. FEBS Letters, 579(18), 3891-3898. https://doi.org/10.1016/j.febslet.2005.06.005

Haque, I., Singh, R., Moosavi-Movahedi, A. A., & Ahmad, F. (2005b). Effect of polyol osmolytes on ΔGD, the Gibbs energy of stabilisation of proteins at different pH values. Biophysical Chemistry, 117(1), 1-12. https://doi.org/10.1016/j.bpc.2005.04.004

Haque, I., Islam, A., Singh, R., Moosavi-Movahedi, A. A., & Ahmad, F. (2006). Stability of proteins in the presence of polyols estimated from their guanidinium chloride-induced transition curves at different pH values and 25°C. Biophysical Chemistry, 119(3), 224-233. https://doi.org/10.1016/j.bpc.2005.09.016

Harpaz, Y., Gerstein, M., & Chothia, C. (1994). Volume changes on protein folding. Structure, 2(7), 641-649. https://doi.org/10.1016/S0969-2126(00)00065-4

Harries, D., & Rösgen, J. (2008). A practical guide on how osmolytes modulate macromolecular properties. Methods in Cell Biology, 84, 679-735. https://doi.org/10.1016/S0091-679X(07)84022-2

Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295(5561), 1852-1858. https://doi.org/10.1126/science.1068408

Hatters, D. M., Minton, A. P., & Howlett, G .J. (2002). Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. Journal of Biological Chemistry, 277(10), 7824-7830. https://doi.org/10.1074/jbc.M110429200

Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N., Cusick, M. E., Radivojac, P., Uversky, V. N., Vidal, M., & Iakoucheva, L. M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Computational Biology, 2(8), Article e100. https://doi.org/10.1371/journal.pcbi.0020100

Herczenik, E., & Gebbink, M. F. (2008). Molecular and cellular aspects of protein misfolding and disease. The FASEB Journal, 22(7), 2115-2133. https://doi.org/10.1096/fj.07-099671

Hoffmann, E. K., Lambert, I. H., & Pedersen, S. F. (2009). Physiology of cell volume regulation in vertebrates. Physiological Reviews, 89(1), 193-277. https://doi.org/10.1152/physrev.00037.2007

Holmstrom, E. D., Dupuis, N. F., & Nesbitt, D. J. (2015). Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding. The Journal of Physical Chemistry B, 119(9), 3687-3696. https://doi.org/10.1021/jp512491n

Horovitz, A., & Fersht, A. R. (1990). Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. Journal of Molecular Biology, 214(3), 613-617. https://doi.org/10.1016/0022-2836(90)90275-Q

Jacob, M., Schindler, T., Balbach, J., & Schmid, F. X. (1997). Diffusion control in an elementary protein folding reaction. Proceedings of the National Academy of Sciences, 94(11), 5622-5627. https://doi.org/10.1073/pnas.94.11.5622

Jamal, S., Poddar, N. K., Singh, L. R., Dar, T. A., Rishi, V., & Ahmad, F. (2009). Relationship between functional activity and protein stability in the presence of all classes of stabilizing osmolytes. The FEBS Journal, 276(20), 6024-6032. https://doi.org/10.1111/j.1742-4658.2009.07317.x

Joshi, A., & Kishore, N. (2022). Macromolecular crowding and preferential exclusion counteract the effect of protein denaturant: Biophysical aspects. Journal of Molecular Liquids, 360, Article 119429. https://doi.org/10.1016/j.molliq.2022.119429

Kanaya, S., Katsuda, C., Kimura, S., Nakai, T., Kitakuni, E., Nakamura, H., Katayanagi, K., Morikawa, K., & Ikehara, M. (1991). Stabilization of Escherichia coli ribonuclease H by introduction of an artificial disulfide bond. Journal of Biological Chemistry, 266(10), 6038-6044. https://doi.org/10.1016/S0021-9258(18)38080-3

Kaushik, J. K., & Bhat, R. (1998). Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. The Journal of Physical Chemistry B, 102(36), 7058-7066. https://doi.org/10.1021/jp981119l

Kaushik, J. K., & Bhat, R. (2003). Why is trehalose an exceptional protein stabilizer?: An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. Journal of Biological Chemistry, 278(29), 26458-26465. https://doi.org/10.1074/jbc.M300815200

Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry, 14, 1-63. https://doi.org/10.1016/S0065-3233(08)60608-7.

Kellis, Jr, J. T., Nyberg, K., & Fersht, A. R. (1989). Energetics of complementary side chain packing in a protein hydrophobic core. Biochemistry, 28(11), 4914-4922. https://doi.org/10.1021/bi00437a058

Khan, S., Siraj, S., Shahid, M., Haque, M. M., & Islam, A. (2023). Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. International Journal of Biological Macromolecules, 234, Article 123662. https://doi.org/10.1016/j.ijbiomac.2023.123662

Kita, Y., Arakawa, T., Lin, T. Y., & Timasheff, S. N. (1994). Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry, 33(50), 15178-15189. https://doi.org/10.1021/bi00254a029

Klink, T. A., Woycechowsky, K. J., Taylor, K. M., & Raines, R. T. (2000). Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A. European Journal of Biochemistry, 267(2), 566-572. https://doi.org/10.1046/j.1432-1327.2000.01037.x

Kumar, R., Serrette, J. M., & Thompson, E. B. (2005). Osmolyte-induced folding enhances tryptic enzyme activity. Archives of Biochemistry and Biophysics, 436(1), 78-82. https://doi.org/10.1016/j.abb.2005.01.008

Kushwah, N., Jain, V., & Yadav, D. (2020). Osmolytes: A possible therapeutic molecule for ameliorating the neurodegeneration caused by protein misfolding and aggregation. [Special issue]. Biomolecules, 10(1), Article 132. https://doi.org/10.3390/biom10010132

Latimer, W. M., & Rodebush, W. H. (1920). Polarity and ionization from the standpoint of the Lewis theory of valence. Journal of the American Chemical Society, 42(7), 1419-1433. https://doi.org/10.1021/ja01452a015

Leandro, P., & Gomes, C. M. (2008). Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Reviews in Medicinal Chemistry, 8(9), 901-911. https://doi.org/10.2174/138955708785132783

Lebowitz, J. L., Helfand, E., & Praestgaard, E. (1965). Scaled particle theory of fluid mixtures. The Journal of Chemical Physics, 43(3), 774-779. https://doi.org/10.1063/1.1696842

Lee, J. C., & Timasheff, S. N. (1981). The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256(14), 7193-7201. https://doi.org/10.1016/S0021-9258(19)68947-7

Lee, J. C., Gekko, K., & Timasheff, S. N. (1979). Measurements of preferential solvent interactions by densimetric techniques. Methods in Enzymology, 61, 26-49. https://doi.org/10.1016/0076-6879(79)61005-4

Lin, T. Y., & Timasheff, S. N. (1996). On the role of surface tension in the stabilization of globular proteins. Protein Science, 5(2), 372-381. https://doi.org/10.1002/pro.5560050222

Liu, Y., & Bolen, D. W. (1995). The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry, 34(39), 12884-12891. https://doi.org/10.1021/bi00039a051

Makhatadze, G. I., & Privalov, P. L. (1992). Protein interactions with urea and guanidinium chloride: a calorimetric study. Journal of Molecular Biology, 226(2), 491-505. https://doi.org/10.1016/0022-2836(92)90963-K

Mashino, T., & Fridovich, I. (1987). Effects of urea and trimethylamine-N-oxide on enzyme activity and stability. Archives of Biochemistry and Biophysics, 258(2), 356-360. https://doi.org/10.1016/0003-9861(87)90355-9

Matthews, B. W. (1993). Structural and genetic analysis of protein stability. Annual Review of Biochemistry, 62(1), 139-160. https://doi.org/10.1146/annurev.bi.62.070193.001035

Matthews, B. W. (1995). Studies on protein stability with T4 lysozyme. Advances in Protein Chemistry, 46, 249-278. https://doi.org/10.1016/S0065-3233(08)60337-X

Matthews, B. W. (1996). Structural and genetic analysis of the folding and function of T4 lysozyme. The FASEB Journal, 10(1), 35-41. https://doi.org/10.1096/fasebj.10.1.8566545

Mattos, C., & Ringe, D. (2001). Proteins in organic solvents. Current Opinion in Structural Biology, 11(6), 761-764. https://doi.org/10.1016/S0959-440X(01)00278-0

McParland, E. L., Alexander, H., & Johnson, W. M. (2021). The osmolyte ties that bind: genomic insights into synthesis and breakdown of organic osmolytes in marine microbes. Frontiers in Marine Science, 8, Article 689306. https://doi.org/10.3389/fmars.2021.689306

Meersman, F. and Heremans, K., 2003. Temperature-induced dissociation of protein aggregates: accessing the denatured state. Biochemistry, 42(48), 14234-14241, https://doi.org/10.1021/bi035623e

Meng, F. G., Park, Y. D., & Zhou, H. M. (2001). Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. The International Journal of Biochemistry and Cell Biology, 33(7), 701-709. https://doi.org/10.1016/S1357-2725(01)00048-6

Minton, A. P. (1983). The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Molecular and Cellular Biochemistry, 55, 119-140. https://doi.org/10.1007/BF00673707

Minton, A. P. (2001). The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. Journal of Biological Chemistry, 276(14), 10577-10580. https://doi.org/10.1074/jbc.R100005200

Moeckel, G. W., Shadman, R., Fogel, J. M., & Sadrzadeh, S. M. (2002). Organic osmolytes betaine, sorbitol and inositol are potent inhibitors of erythrocyte membrane ATPases. Life Sciences, 71(20), 2413-2424. https://doi.org/10.1016/S0024-3205(02)02035-0

Mojtabavi, S., Samadi, N., & Faramarzi, M. A. (2019). Osmolyte-induced folding and stability of proteins: concepts and characterization. [Special issue]. Iranian Journal of Pharmaceutical Research, 18, 13-30, https://doi.org/10.22037/ijpr.2020.112621.13857

Myers, J. S., & Jakoby, W. B. (1973). Effect of polyhydric alcohols on kinetic parameters of enzymes. Biochemical and Biophysical Research Communications, 51(3), 631-636. https://doi.org/10.1016/0006-291X(73)91361-2

Myers, J. S., & Jakoby, W. B. (1975). Glycerol as an agent eliciting small conformational changes in alcohol dehydrogenase. Journal of Biological Chemistry, 250(10), 3785-3789. https://doi.org/10.1016/S0021-9258(19)41467-1

Naik, V., Kardani, J., & Roy, I. (2016). Trehalose-induced structural transition accelerates aggregation of α-synuclein. Molecular Biotechnology, 58(4), 251-255. https://doi.org/10.1007/s12033-016-9923-4

Nicholls, A., Sharp, K. A., & Honig, B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Structure, Function, and Bioinformatics, 11(4), 281-296. https://doi.org/10.1002/prot.340110407

Nussinov, R., Jang, H., Tsai, C. J., Liao, T. J., Li, S., Fushman, D., & Zhang, J. (2017). Intrinsic protein disorder in oncogenic KRAS signaling. Cellular and Molecular Life Sciences, 74, 3245-3261. https://doi.org/10.1007/s00018-017-2564-3

O'Connor, T. F., Debenedetti, P. G., & Carbeck, J. D. (2004). Simultaneous determination of structural and thermodynamic effects of carbohydrate solutes on the thermal stability of ribonuclease A. Journal of the American Chemical Society, 126(38), 11794-11795. https://doi.org/10.1021/ja0481777

O'Connor, T. F., Debenedetti, P. G., & Carbeck, J. D. (2007). Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory. Biophysical Chemistry, 127(1-2), 51-63. https://doi.org/10.1016/j.bpc.2006.12.004

Ortiz-Costa, S., Sorenson, M. M., & Sola-Penna, M. (2002). Counteracting effects of urea and methylamines in function and structure of skeletal muscle myosin. Archives of Biochemistry and Biophysics, 408(2), 272-278. https://doi.org/10.1016/S0003-9861(02)00565-9

Pace, C. N., Shirley, B. A., McNutt, M., & Gajiwala, K. (1996). Forces contributing to the conformational stability of proteins. The FASEB Journal, 10(1), 75-83. https://doi.org/10.1096/fasebj.10.1.8566551

Pierce, V., Kang, M., Aburi, M., Weerasinghe, S., & Smith, P. E. (2008). Recent applications of Kirkwood–Buff theory to biological systems. Cell Biochemistry and Biophysics, 50, 1-22. https://doi.org/10.1007/s12013-007-9005-0

Pierotti, R. A. (1965). Aqueous solutions of nonpolar gases1. The Journal of Physical Chemistry, 69(1), 281-288. https://doi.org/10.1021/j100885a043

Pierotti, R. A. (1976). A scaled particle theory of aqueous and nonaqueous solutions. Chemical Reviews, 76(6), 717-726. https://doi.org/10.1021/cr60304a002

Pollard, A., & Wyn Jones, R.G., 1979. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta, 144, 291-298. https://doi.org/10.1007/BF00388772

Prakash, V., Loucheux, C., Scheufele, S., Gorbunoff, M. J., & Timasheff, S. N. (1981). Interactions of proteins with solvent components in 8 M urea. Archives of Biochemistry and Biophysics, 210(2), 455-464. https://doi.org/10.1016/0003-9861(81)90209-5

Qu, Y., Bolen, C. L., & Bolen, D. W. (1998). Osmolyte-driven contraction of a random coil protein. Proceedings of the National Academy of Sciences, 95(16), 9268-9273. https://doi.org/10.1073/pnas.95.16.9268

Radli, M., & Rüdiger, S. G. (2018). Dancing with the diva: Hsp90–client interactions. Journal of Molecular Biology, 430(18), 3029-3040. https://doi.org/10.1016/j.jmb.2018.05.026

Ratnaparkhi, G. S., & Varadarajan, R. (2001). Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states. Journal of Biological Chemistry, 276(31), 28789-28798. https://doi.org/10.1074/jbc.M101906200

Reiss, H., Frisch, H. L., & Lebowitz, J. L. (1959). Statistical mechanics of rigid spheres. The Journal of Chemical Physics, 31(2), 369-380. https://doi.org/10.1063/1.1730361

Rösgen, J. (2009). Molecular crowding and solvation: Direct and indirect impact on protein reactions. In J. Shriver (Ed.). Protein Structure, Stability, and Interactions, Vol. 490. (pp. 195-225). Human Press. https://doi.org/10.1007/978-1-59745-367-7_9

Rumjanek, F. D. (2018). Osmolyte induced tumorigenesis and metastasis: Interactions with intrinsically disordered proteins. Frontiers in Oncology, 8, Article 353. https://doi.org/10.3389/fonc.2018.00353

Saunders, A. J., Davis‐Searles, P. R., Allen, D. L., Pielak, G. J., & Erie, D. A. (2000). Osmolyte‐induced changes in protein conformational equilibria. Biopolymers, 53(4), 293-307.

Santoro, M. M.,& Bolen, D. W. (1992). A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry, 31(20), 4901-4907. https://doi.org/10.1021/bi00135a022

Schellman, J. A. (2003). Protein stability in mixed solvents: a balance of contact interaction and excluded volume. Biophysical Journal, 85(1), 108-125. https://doi.org/10.1016/S0006-3495(03)74459-2

Schachman, H. K., & Lauffer, M. A. (1949). The hydration, size and shape of tobacco mosaic virus2a,2b. Journal of the American Chemical Society, 71(2), 536-541. https://doi.org/10.1021/ja01170a047

Sharp, K. A., Nicholls, A., Fine, R. F., & Honig, B. (1991). Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science, 252(5002), 106-109. https://doi.org/10.1126/science.2011744

Singh, R., Haque, I., & Ahmad, F. (2005). Counteracting osmolyte trimethylamine N-oxide destabilizes proteins at pH below its pKa: measurements of thermodynamic parameters of proteins in the presence and absence of trimethylamine N-oxide. Journal of Biological Chemistry, 280(12), 11035-11042. https://doi.org/10.1074/jbc.M410716200

Song, X., An, L., Wang, M., Chen, J., Liu, Z., & Yao, L. (2021). Osmolytes can destabilize proteins in cells by modulating electrostatics and quinary interactions. ACS Chemical Biology, 16(5), 864-871. https://doi.org/10.1021/acschembio.1c00024

Staby, L., O'Shea, C., Willemoës, M., Theisen, F., Kragelund, B. B., & Skriver, K. (2017). Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochemical Journal, 474(15), 2509-2532. https://doi.org/10.1042/BCJ20160631

Storey, K. B. (1997). Organic solutes in freezing tolerance. Comparative Biochemistry and Physiology Part A: Physiology, 117(3), 319-326. https://doi.org/10.1016/S0300-9629(96)00270-8

Tanaka, M., Machida, Y., & Nukina, N. (2005). A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. Journal of Molecular Medicine, 83, 343-352. https://doi.org/10.1007/s00109-004-0632-2

Taneja, S., & Ahmad, F. (1994). Increased thermal stability of proteins in the presence of amino acids. Biochemical Journal, 303(1), 147-153. https://doi.org/10.1042/bj3030147

Tanner, J. J., Hecht, R. M., & Krause, K. L. (1996). Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 2.5 Å resolution. Biochemistry, 35(8), 2597-2609. https://doi.org/10.1021/bi951988q

Timasheff, S. N. (1992). Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry, 31(41), 9857-9864. https://doi.org/10.1021/bi00156a001

Timasheff, S. N. (1998). Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Advances in Protein Chemistry, 51, 355-432.

Timasheff, S. N. (2002a). Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry, 41(46), 13473-13482. https://doi.org/10.1021/bi020316e

Timasheff, S. N. (2002b). Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.In Proceedings of the National Academy of Sciences, 99(15), 9721-9726. https://doi.org/10.1073/pnas.122225399

Uversky, V. N. (2016). Paradoxes and wonders of intrinsic disorder: Complexity of simplicity. Intrinsically Disordered Proteins, 4(1), Article e1135015. https://doi.org/10.1080/21690707.2015.1135015

Uversky, V. N., Li, J., & Fink, A. L. (2001). Trimethylamine-N-oxide-induced folding of α-synuclein. FEBS Letters, 509(1), 31-35. https://doi.org/10.1016/S0014-5793(01)03121-0

Wang, A., & Bolen, D. W. (1996). Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm. Biophysical Journal, 71(4), 2117-2122. https://doi.org/10.1016/S0006-3495(96)79410-9

Wang, A., & Bolen, D. W. (1997). A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry, 36(30), 9101-9108. https://doi.org/10.1021/bi970247h

Wang, A., Robertson, A. D., & Bolen, D. W. (1995). Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry, 34(46), 15096-15104. https://doi.org/10.1021/bi00046a016

Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology, 16(1), 18-29. https://doi.org/10.1038/nrm3920

Xie, G., & Timasheff, S. N. (1997a). Temperature dependence of the preferential interactions of ribonuclease a in aqueous co‐solvent systems: Thermodynamic analysis. Protein Science, 6(1), 222-232. https://doi.org/10.1002/pro.5560060124

Xie, G., & Timasheff, S. N. (1997b). The thermodynamic mechanism of protein stabilization by trehalose. Biophysical Chemistry, 64(1-3), 25-43. https://doi.org/10.1016/S0301-4622(96)02222-3

Xie, G., & Timasheff, S. N. (1997c). Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein. Protein Science, 6(1), 211-221. https://doi.org/10.1002/pro.5560060123

Yan, Y. B., Wang, Q., He, H. W., & Zhou, H. M. (2004). Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin. Biophysical Journal, 86(3), 1682-1690. https://doi.org/10.1016/S0006-3495(04)74237-X

Yancey, P. H. (1992). Compatible and counteracting aspects of organic osmolytes in mammalian kidney cells in vivo and in vitro. In G. N. Somero, C. B. Osmond and C. L. Bolis (Eds.). Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels (pp. 19-32). Springer. https://doi.org/10.1007/978-3-642-76682-4_2

Yancey, P. H. (2001). Water stress, osmolytes and proteins. American Zoologist, 41(4), 699-709. https://doi.org/10.1093/icb/41.4.699

Yancey, P. H. (2003). Proteins and counteracting osmolytes. Biologist, 50(3), 126-131.

Yancey, P. H. (2004). Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea. Science Progress, 87(1), 1-24. https://doi.org/10.3184/003685004783238599

Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208(15), 2819-2830. https://doi.org/10.1242/jeb.01730

Yancey, P. H., & Somero, G. N. (1980). Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. Journal of Experimental Zoology, 212(2), 205-213. https://doi.org/10.1002/jez.1402120207

Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217(4566), 1214-1222. https://doi.org/10.1126/science.7112124.

Yancey, P. H., Haner, R. G., & Freudenberger, T. H. (1990). Effects of an aldose reductase inhibitor on organic osmotic effectors in rat renal medulla. American Journal of Physiology-Renal Physiology, 259(5), F733-F738. https://doi.org/10.1152/ajprenal.1990.259.5.F733

Yancey, P. H., Rhea, M. D., Kemp, K., & Bailey, D. M. (2004). Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cellular and Molecular Biology, 50(4), 371-376.

Yang, D. S., Yip, C. M., Huang, T. J., Chakrabartty, A., & Fraser, P. E. (1999). Manipulating the amyloid-β aggregation pathway with chemical chaperones. Journal of Biological Chemistry, 274(46), 32970-32974. https://doi.org/10.1074/jbc.274.46.32970

Zimmerman, S. B., & Minton, A. P. (1993). Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annual Review of Biophysics and Biomolecular Structure, 22(1), 27-65. https://doi.org/10.1146/annurev.bb.22.060193.000331

Zimmerman, S. B., & Trach, S. O. (1991). Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. Journal of Molecular Biology, 222(3), 599-620. https://doi.org/10.1016/0022-2836(91)90499-V