Pharmacophore-based SAR Analysis and Synthetic Route Review of Imidazole Core Analogues
Main Article Content
Abstract
The five-membered nitrogen-containing heterocyclic moiety imidazole forms part of molecules that have been used to treat various diseases including life-threatening cancer. Moreover, the imidazole moiety is naturally present in various plants, marine, and microorganism-based metabolites and possesses various medicinal benefits. In this review, the pharmacophore-based substitution effect on the imidazole skeleton is primely compiled. A plethora of synthetic approaches have been adopted to develop imidazole hybrids, a number of which have been used as a basic skeleton for synthesizing other fused hybrids. Second, various recent synthetic methods, both in vitro and in vivo activities, are reviewed. Pharmacophoric examination showed that imidazole acts as a ring aromatic, or hydrophobic center depending on the type of substitution. While substitution with benzene ring, it acts only as a hydrogen bond donor and substitution with a hydrophobic ring and an aliphatic long chain on the imidazole ring leads to anticonvulsant and anti-inflammatory activity. The substitution of various electron-sharing features increases the antiulcerogenic property as well as anticancer activity. The results of this review work suggest that fabrication with specific pharmacophoric features aids in the synthesis of selective antagonist for various diseases.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Alghamdi, S. S., Suliman, R. S., Almutairi, K., Kahtani, K., & Aljatli, D. (2021). Imidazole as a promising medicinal scaffold: current status and future direction. Drug Design, Development and Therapy, 15, 3289-3312. https://doi.org/10.2147/DDDT.S307113
Ali, S., Ali, M., Khan, A., Ullah, S., Waqas, M., Al-Harrasi, A., Latif, A., Ahmad, M., & Saadiq, M. (2022). Novel 5-(Arylideneamino)-1 H -Benzo[ d ]imidazole-2-thiols as Potent Anti-Diabetic Agents: Synthesis, In Vitro α-Glucosidase Inhibition, and Molecular Docking Studies. ACS Omega, 7(48), 43468–43479. https://doi.org/10.1021/acsomega.2c03854.
Alikarami, M., & Amozad, M. (2017). One-pot synthesis of 2,4,5-trisubstituted imidazole derivatives catalyzed by btppc under solvent-free conditions. Bulletin of the Chemical Society of Ethiopia, 31(1), 177-184. https://doi.org/10.4314/bcse.v31i1.16
Al-Masoudi, N. A., Saeed, B. A., Essa, A. H., & Al-Soud, Y. A. (2009). Microwave-assisted synthesis of acyclic C -nucleosides from 1,2- and 1,3-diketones. Nucleosides, Nucleotides and Nucleic Acid, 28, 175-183. https://doi.org/10.1080/15257770902830997
Bamoro, C., Bamba, F., Steve-Evanes, K. T. D., Vallin, A., & Chagnault, V. (2021). Design, synthesis and antibacterial activity evaluation of 4,5-diphenyl-1H-imidazoles derivatives. Open Journal of Medicinal Chemistry, 11, 17-26. https://doi.org/10.4236/ojmc.2021.112002
Barnett, J. B., & Brundage, K. M. (2010). Immunotoxicology of pesticides and chemotherapies. In C. A. McQueen (Ed.). Comprehensive Toxicology (pp. 467-487). Elsevier. https://doi.org/10.1016/B978-0-08-046884-6.00627-8
Bastaki, S., Abdulrazzaq, Y., Shafiullah, M., Więcek, M., Kieć-Kononowicz, K., & Sadek, B. (2018). Anticonvulsant and reproductive toxicological studies of the imidazole-based histamine H3R antagonist in mice. Drug Design, Development and Therapy, Volume 12, 179-194. https://doi.org/10.2147/DDDT.S144730
Bhat, S. U., Naikoo, R. A., Mir, M. A., & Tomar, R. (2015). Synthesis of tetra-substituted imidazole derivatives by condensation reaction using zeolite H-ZSM 22 as a heterogeneous solid acid catalyst. International Journal of Current Pharmaceutical Research, 8(1), 36-39.
Bhatnagar, A., Sharma. P. K., & Kumar, N. (2011). A review on “imidazoles”: Their chemistry and pharmacological potentials. International Journal of PharmTech Research, 3(1), 268-282.
Bolla, P. K., Meraz, C. A., Rodriguez, V. A., Deaguero, I., Singh, M., Yellepeddi, V. K., & Renukuntla, J. (2019). Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules, 24(17), Article 3139. https://doi.org/10.3390/molecules24173139
Calderón-Arancibia, J., Espinosa-Bustos, C., Cañete-Molina, Á., Tapia, R., Faúndez, M., Torres, M., Aguirre, A., Paulino, M., & Salas, C. (2015). Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines. Molecules, 20(4), 6808-6826. https://doi.org/10.3390/molecules20046808
Ciaffaglione, V., Intagliata, S., Pittalà, V., Marrazzo, A., Sorrenti, V., Vanella, L., Rescifina, A., Floresta, G., Sultan, A., Greish, K., & Salerno, L. (2020). New arylethanolimidazole derivatives as HO-1 inhibitors with cytotoxicity against MCF-7 breast cancer cells. International Journal of Molecular Science, 21(6), Article 1923. https://doi.org/10.3390/ijms21061923
de Araújo, J. S., García-Rubia, A., Sebastián-Pérez, V., Kalejaiye, T. D., da Silva, P. B., Fonseca-Berzal, C. R., Maes, L., De Koning, H. P., Soeiro, M. D. N. C., & Gil, C. (2019). Imidazole derivatives as promising agents for the treatment of chagas disease. Antimicrobial Agents and Chemotherapy, 63(4), Article e02156-18. https://doi.org/10.1128/aac.02156-18
Fang, S., Yu, H., Yang, X., Li, J., & Shao, L. (2019). Nickel‐catalyzed construction of 2,4‐disubstituted imidazoles via C–C coupling and C−N condensation cascade reactions. Advanced Synthesis and Catalysis, 361, 3312-3317. https://doi.org/10.1002/adsc.201900096
Gaba, M., Singh, S., & Mohan, C. (2014). Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. European Journal of Medicinal Chemistry, 76, 494-505. https://doi.org/10.1016/j.ejmech.2014.01.030
Ganguly, S., Vithlani, V., Kesharwani, A., Kuhu, R., Baskar, L., Mitramazumder, P., Sharon, A., & Dev, A. (2011). Synthesis, antibacterial and potential anti-HIV activity of some novel imidazole analogs. Acta Pharmaceutica, 61(2), 187-201. https://doi.org/10.2478/v10007-011-0018-2
Gopalakrishnan, A. K., Angamaly, S. A., & Velayudhan, M. P. (2021). An insight into the biological properties of imidazole‐based schiff bases: A review. ChemistrySelect, 6(40), 10918-10947. https://doi.org/10.1002/slct.202102619
Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Witvrouw, M., Balzarini, J., De Clercq, E., & Chapat, J.-P. (1998). Synthesis of imidazo[1,2-a] pyridines as antiviral agents. Journal of Medicinal Chemistry, 41(25), 5108-5112. https://doi.org/10.1021/jm981051y
Gupta, N., & Pathak, D. P. (2011). Synthesis and evaluation of n-substituted imidazole derivatives for antimicrobial activity. Indian Journal of Pharmaceutical Sciences, 73(6), 674-678. https://doi.org/10.4103/0250-474X.100246
Hamdi, A., Daoudi, W., Aaddouz, M., Azzouzi, M., Amhamdi, H., Elyoussfi, A., Aatiaoui, A. E., Verma, D. K., Abboud, M., & Ahari, M. (2024). Various synthesis and biological evaluation of some tri -tetra-substituted imidazoles derivatives: A review. Heliyon, 10(10), Article e31253. https://doi.org/10.1016/j.heliyon.2024.e31253
Heravi, M. M., Bakhtiari, K., Oskooie, H. A., & Taheri, S. (2007). Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2·6H2O under heterogeneous system. Journal of Molecular Catalysis A: Chemical, 263, 279-281. https://doi.org/10.1016/j.molcata.2006.08.070
Irfan, N., Vaithyanathan, P., Anandaram, H., Zaidh, S. M., Varshini, S. P., & Puratchikody, A. (2023). Active and allosteric site binding MM-QM studies of methylidene tetracyclo derivative in PCSK9 protein intended to make a safe antilipidemic agent. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2023.2239928
Khabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R., & Farrokhroz, A. A. (2003). Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 13(17), 2863-2865. https://doi.org/10.1016/S0960-894X(03)00591-2
Lakshmanan, B., Mazumder, P., Sasmal, D., & Ganguly, S. (2010). Anti-ulcer activity of 1-substituted imidazoles against gastric ulcers in rats. Pharmacologyonline, 3, 503-513.
Liu, C., Shi, C., Mao, F., Xu, Y., Liu, J., Wei, B., Zhu, J., Xiang, M., & Li, J. (2014). Discovery of new imidazole derivatives containing the 2,4-dienone motif with broad-spectrum antifungal and antibacterial activity. Molecules, 19(10), 15653-15672. https://doi.org/10.3390/molecules191015653
Lombardino, J. G., & Lowe, J. A. (2004). The role of the medicinal chemist in drug discovery- then and now. Nature Reviews Drug Discovery, 3, 853-862. https://doi.org/10.1038/nrd1523
Maleki, A., & Alirezvani, Z. (2016). A highly efficient synthesis of substituted imidazoles via a one-pot multicomponent reaction by using urea/hydrogen peroxide (UHP). Journal of the Chilean Chemical Society, 61(3), 3116-3119. https://doi.org/10.4067/S0717-97072016000300022
Mariappan, G., Sutharson, L., Srivastav, T. P., Kumar, D., & Patangia, U. (2012). Pharmacological and toxicological evaluation of some novel 2-substituted 4, 5-diphenyl imidazole derivatives. Pharmacologia, 3(8), 258-266.
MaGee, D. I., Bahramnejad, M., & Dabiri, M. (2013). Highly efficient and eco-friendly synthesis of 2-alkyl and 2-aryl-4,5-diphenyl-1H-imidazoles under mild conditions. Tetrahedron Letters, 54(21), 2591-2594. https://doi.org/10.1016/j.tetlet.2013.03.008
Marzouk, A. A., Bass, A. K. A., Ahmed, M. S., Abdelhamid, A. A., Elshaier, Y. A. M. M., Salman, A. M. M., & Aly, O. M. (2020). Design, synthesis and anticonvulsant activity of new imidazolidindione and imidazole derivatives. Bioorganic Chemistry, 101, Article 104020. https://doi.org/10.1016/j.bioorg.2020.104020
Messa, F., Papadia, P., Perrone, S., & Salomone, A. (2023). 5-(4-chlorophenyl)-N,1-di-o-tolyl-1H-imidazole-2-amine. Molbank, 2023(2), Article M1648. https://doi.org/10.3390/M1648
Mohamed, S. K., Simpson, J., Marzouk, A. A., Talybov, A. H., Abdelhamid, A. A., Abdullayev, Y. A., & Abbasov, V. M. (2015). Multicomponent green synthesis, spectroscopic and structural investigation of multi-substituted imidazoles. Part 1. Zeitschrift für Naturforschung B, 70, 809-817. https://doi.org/10.1515/znb-2015-0067
Narasimhan, B., Sharma, D., Kumar, P., Yogeeswari, P., & Sriram, D. (2011). Synthesis, antimicrobial and antimycobacterial evaluation of [2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones. Journal of Enzyme Inhibition and Medicinal Chemistry, 26, 720-727. https://doi.org/10.3109/14756366.2010.548331
Nascimento, M. V. P. S., Munhoz, A. C. M., Theindl, L. C., Mohr, E. T. B., Saleh, N., Parisotto, E. B., Rossa, T. A., Zamoner, A., Creczynski-Pasa, T. B., Filippin-Monteiro, F. B., Sá, M. M., & Dalmarco, E. M. (2018). A novel tetrasubstituted imidazole as a prototype for the development of anti-inflammatory drugs. Inflammation, 41, 1334-1348. https://doi.org/10.1007/s10753-018-0782-y
Patel, S., Patil, R., Chavan, J., & Beldar, A. (2022). Polymer based advanced recipes for imidazoles: a review. Turkish Journal of Chemistry, 46(3), 624-664. https://doi.org/10.55730/1300-0527.3357
Romero, D. H., Heredia, V. E. T., García-Barradas, O., López, M. E. M., & Pavón, E. S. (2014). Synthesis of imidazole derivatives and their biological activities. Journal of Chemistry and Biochemistry, 2(2), 45-83.
Safari, J., Gandomi-Ravandi, S., & Akbari, Z. (2013). Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline MgAl2O4 as an effective catalyst. Journal of Advanced Research, 4(6), 509-514. https://doi.org/10.1016/j.jare.2012.09.001
Sharma, P., LaRosa, C., Antwi, J., Govindarajan, R., & Werbovetz, K. A. (2021). Imidazoles as potential anticancer agents: An update on recent studies. Molecules, 26(14), Article 4213. https://doi.org/10.3390/molecules26144213
Shrivastava, T. P. S., Patil, U. K., Garg, S., & Singh, M. A. (2013). Divers pharmacological significance of imidazole derivatives- A review. Research Journal of Pharmacy and Technology, 6(1), 44-50.
Shukla, S., Kouanda, A., Silverton, L., Talele, T. T., & Ambudkar, S. V. (2014). Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette drug transporters and BCR-ABL kinase using a three-dimensional quantitative structure–activity relationship approach. Molecular Pharmaceutics, 11(7), 2313-2322. https://doi.org/10.1021/mp400762h
Singh, S., & Bajpai, S. (2019). Eco-friendly and facile synthesis of substituted imidazoles via nano zirconia catalyzed one-pot multicomponent reaction of isatin derivatives with ammonium acetate and substituted aromatic aldehydes under solvent free conditions. In I. Sinha and M. Shukla (Eds.). Nanocatalysts (pp. 1-19). IntechOpen.
Skoĉibusic, M., Odžak, R., Ramić, A., Smolić, T., Hrenar, T., & Primožič, I. (2018). Novel imidazole aldoximes with broad-spectrum antimicrobial potency against multidrug-resistant gram-negative bacteria. Molecules, 23(5), Article 1212. https://doi.org/10.3390/molecules23051212
Sonar, J., Pardeshi, S., Dokhe, S., Pawar, R., Kharat, K., Zine, A., Matsagar, B., Wu, K., & Thore, S. (2019). An efficient method for the synthesis of 2,4,5-trisubstituted imidazoles using lactic acid as promoter. Discover Applied Sciences, 1, Article 1045. https://doi.org/10.1007/s42452-019-0935-0
Uçucu, Ü., Karaburun, N. G., & Işikdağ, İ. (2001). Synthesis and analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives. Il Farmaco, 56(4), 285-290. https://doi.org/10.1016/S0014-827X(01)01076-X
Vessally, E., Soleimani-Amiri, S., Hosseinian, A., Edjlali, L., & Bekhradnia, A. (2017). New protocols to access imidazoles and their ring fused analogues: synthesis from N-propargylamines. RSC Advances, 7, 7079-7091. https://doi.org/10.1039/C6RA25816F
Wong, L. C., Gehre, A., Stanforth, S. P., & Tarbit, B. (2013). Convenient synthesis of highly substituted imidazole derivatives. Synthetic Communications, 43(1), 80-84. https://doi.org/10.1080/00397911.2011.591957
Ziarani, G. M., Dashtianeh, Z., Nahad, M. S., & Badiei, A. (2015). One-pot synthesis of 1,2,4,5-tetra substituted imidazoles using sulfonic acid functionalized silica (SiO2-Pr-SO3H). Arabian Journal of Chemistry, 8(5), 692-697. https://doi.org/10.1016/j.arabjc.2013.11.020