Metabolic Process and Types of Carbon Source leads to Desired Polyhydroxyalkanoate Properties

Main Article Content

Md. Salatul Islam Mozumder
Mohammad Shaiful Alam Amin
Nanda Kishor Roy
Md. Mohibul Alam

Abstract

Polyhydroxyalkanoates (PHAs) have recently been focused due to increasing public awareness of environmental issues. A lot of efforts have been made to understand the mechanisms of biosynthesis of PHA homo or copolymers. PHAs of varying monomer composition have been produced using a number of carbon sources and organisms. Carbon sources played a major role in determination of homo/copolymers. The metabolic processes leading to PHA biosynthesis were analyzed, aiming to differentiate their effect on production of homo/copolymers. Moreover, the roles of carbon source and/or organism behind physical and chemical properties of PHAs were evaluated. One key strategy in the production of a novel copolymer PHA is to engineer a strain with desired genes that can be used for desired copolymer production. It engineered strain could be able to design and optimize the metabolic process to produce more diverse polymers. Development of more efficient regulatory factor to produce PHAs of selective monomer composition and properties was focused in this review.

Article Details

Section
Review Ariticle

References

Abe, H., & Doi, Y. (1999). Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. International Journal of Biological Macromolecules, 25(1-3), 185-192. https://doi.org/10.1016/s0141-8130(99)00033-1

Ackermann, J. U., & Babel, W. (1997). Growth-associated synthesis of poly(hydroxybutyric acid) in Methylobacterium rhodesianum as an expression of an internal bottleneck. Applied Microbiology and Biotechnology, 47(2), 144-149. https://doi.org/10.1007/s002530050903

Akaraonye, E., Keshavarz, T., & Roy, I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. Journal of Chemical Technology and Biotechnology, 85(6), 732-743. https://doi.org/10.1002/jctb.2392

Al-Kaddo, K. B., Mohamad, F., Murugan, P., Tan, J. S., Sudesh, K., & Samian, M. R. (2020). Production of P(3HB-co-4HB) copolymer with high 4HB molar fraction by Burkholderia contaminans Kad1 PHA synthase. Biochemical Engineering Journal, 153, Article 107394. https://doi.org/10.1016/j.bej.2019.107394

Andin, N., Longieras, A., Veronese, T., Marcato, F., Molina-Jouve, C., & Uribelarrea, J.-L. (2017). Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnology and Bioprocess Engineering, 22(3), 308-318. https://doi.org/10.1007/s12257-016-0449-1

Anis, S. N. S., Mohd Annuar, M. S., & Simarani, K. (2018). Microbial biosynthesis and in vivo depolymerization of intracellular medium-chain-length poly-3-hydroxyalkanoates as potential route to platform chemicals. Biotechnology and Applied Biochemistry, 65(6), 784-796. https://doi.org/10.1002/bab.1666

Atsumi, S., & Liao, J. C. (2008). Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Applied and Environmental Microbiology, 74(24), 7802-7808. https://doi.org/10.1128/AEM.02046-08

Borrero-de Acuña, J. M., Bielecka, A., Häussler, S., Schobert, M., Jahn, M., Wittmann, C., Jahn, D., & Poblete-Castro, I. (2014). Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microbial Cell Factories, 13(1), Article 88. https://doi.org/10.1186/1475-2859-13-88

Brigham, C. J., Budde, C. F., Holder, J. W., Zeng, Q., Mahan, A. E., Rha, C., & Sinskey, A. J. (2010). Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. Journal of Bacteriology, 192(20), 5454-5464. https://doi.org/10.1128/jb.00493-10

Byrom, D. (1990). Industrial production of copolymer from Alcaligenes eutrophus. In E. A. Dawes (Ed.). Novel Biodegradable Microbial Polymers (pp. 113-117). Springer. https://doi.org/10.1007/978-94-009-2129-0_10

Cavalheiro, J. M. B. T., Raposo, R. S., de Almeida, M. C. M. D., Teresa Cesário, M., Sevrin, C., Grandfils, C., & da Fonseca, M. M. R. (2012). Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresource Technology, 111, 391-397. https://doi.org/10.1016/j.biortech.2012.01.176

Cha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309, Article 123332. https://doi.org/10.1016/j.biortech.2020.123332

Chen, G.-Q., & Jiang, X.-R. (2017). Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2(3), 192-197. https://doi.org/10.1016/j.synbio.2017.09.001

Chen, J., Li, W., Zhang, Z.-Z., Tan, T.-W., & Li, Z.-J. (2018). Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source. Microbial Cell Factories, 17(1), Article 102. https://doi.org/10.1186/s12934-018-0949-0

Chen, J., Mitra, R., Zhang, S., Zuo, Z., Lin, L., Zhao, D., Xiang, H., & Han, J. (2019a). Unusual Phosphoenolpyruvate (PEP) synthetase-like protein crucial to enhancement of polyhydroxyalkanoate accumulation in Haloferax mediterranei revealed by dissection of pep-pyruvate interconversion mechanism. Applied and Environmental Microbiology, 85(19), Article e00984-19. https://doi.org/10.1128/AEM.00984-19

Chen, Y., Chen, X.-Y., Du, H.-T., Zhang, X., Ma, Y.-M., Chen, J.-C., Ye, J.-W., Jiang, X.-R.,& Chen, G.-Q. (2019b). Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metabolic Engineering, 54, 69-82. https://doi.org/10.1016/j.ymben.2019.03.006

Chia, K.-H., Ooi, T.-F., Saika, A., Tsuge, T., & Sudesh, K. (2010). Biosynthesis and characterization of novel polyhydroxyalkanoate polymers with high elastic property by Cupriavidus necator PHB−4 transformant. Polymer Degradation and Stability, 95(12), 2226-2232. https://doi.org/10.1016/j.polymdegradstab.2010.09.011

Choi, S. Y., Rhie, M. N., Kim, H. T., Joo, J. C., Cho, I. J., Son, J., Jo, S. Y., Sohn, Y. J., Baritugo, K.-A., Pyo, J., Lee, Y., Lee, S. Y., & Park, S. J. (2020). Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 58, 47-81. https://doi.org/10.1016/j.ymben.2019.05.009

Darnault, C., Volbeda, A., Kim, E. J., Legrand, P., Vernède, X., Lindahl, P. A., & Fontecilla-Camps, J. C. (2003). Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Structural and Molecular Biology, 10(4), 271-279. https://doi.org/10.1038/nsb912

de Smet, M. J., Eggink, G., Witholt, B., Kingma, J., & Wynberg, H. (1983). Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. Journal of Bacteriology, 154(2), 870-878. https://doi.org/10.1128/jb.154.2.870-878.1983

Donaruma, L. G. (1991). Microbial polyesters, by Yoshiharu Doi, VCH, New York, 1990, 156 pp. Journal of Polymer Science Part A Polymer Chemistry, 29(9), 1365-1365.

Doukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W., & Drennan, C. L. (2002). A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science, 298, 567-572. https://doi.org/10.1126/science.1075843

Fernandes, M., Salvador, A., Alves, M. M., & Vicente, A. A. (2020). Factors affecting polyhydroxyalkanoates biodegradation in soil. Polymer Degradation and Stability, 182, Article 109408. https://doi.org/10.1016/j.polymdegradstab.2020.109408

Fukui, T., & Doi, Y. (1997). Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. Journal of Bacteriology, 179(15), 4821-4830. https://doi.org/10.1128/jb.179.15.4821-4830.1997

Fukui, T., & Doi, Y. (1998). Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Applied Microbiology and Biotechnology, 49, 333-336.

Fukui, T., Kichise, T., Iwata, T., & Doi, Y. (2001). Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromolecules, 2(1), 148-153. https://doi.org/10.1021/bm0056052

Galán, B., Dinjaski, N., Maestro, B., de Eugenio, L. I., Escapa, I. F., Sanz, J. M., Garcia, J. L., & Prieto, M. A. (2011). Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Molecular Microbiology, 79(2), 402-418. https://doi.org/10.1111/j.1365-2958.2010.07450.x

Garcia-Gonzalez, L., Mozumder, M. S. I., Dubreuil, M., Volcke, E. I. P., & De Wever, H. (2015). Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catalysis Today, 257, 237-245. https://doi.org/10.1016/j.cattod.2014.05.025

Ghysels, S., Mozumder, M. S. I., De Wever, H., Volcke, E. I. P., & Garcia-Gonzalez, L. (2018). Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide. Bioresource Technology, 249, 858-868. https://doi.org/10.1016/j.biortech.2017.10.081

Herrera, A., Ŝtindlová, A., Martínez, I., Rapp, J., Romero-Kutzner, V., Samper, M. D., Montoto, T., Aguiar-González, B., Packard, T., & Gómez, M. (2019). Microplastic ingestion by Atlantic chub mackerel (Scomber colias) in the Canary Islands coast. Marine Pollution Bulletin, 139, 127-135. https://doi.org/10.1016/j.marpolbul.2018.12.022

Holmes, P. A. (1985). Applications of PHB - a microbially produced biodegradable thermoplastic. Physics in Technology, 16(1), Article 32. https://doi.org/10.1088/0305-4624/16/1/305

Holmes, P. A. (1988). Biologically produced (R)-3-hydroxy- alkanoate polymers and copolymers. In D. C. Bassett (Ed.). Developments in Crystalline Polymers (pp. 1-65). Springer Netherlands. https://doi.org/10.1007/978-94-009-1341-7_1

Hörster, F., & Hoffmann, G. F. (2004). Pathophysiology, diagnosis, and treatment of methylmalonic aciduria-recent advances and new challenges. Pediatric Nephrology, 19(10), 1071-1074. https://doi.org/10.1007/s00467-004-1572-3

Hsieh, W.-C., Wada, Y., & Chang, C.-P. (2009). Fermentation, biodegradation and tensile strength of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Delftia acidovorans. Journal of the Taiwan Institute of Chemical Engineers, 40(2), 143-147. https://doi.org/10.1016/j.jtice.2008.11.004

Hu, S. I., Pezacka, E., & Wood, H. G. (1984). Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein. Journal of Biological Chemistry, 259(14), 8892-8897.

Huisman, G. W., Wonink, E., de Koning, G., Preusting, H., & Witholt, B. (1992). Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Applied Microbiology and Biotechnology, 38(1), 1-5. https://doi.org/10.1007/BF00169409

Huong, K.-H., Mohd Yahya, A. R., & Amirul, A. A. (2014). Pronounced synergistic influence of mixed substrate cultivation on single step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. Journal of Chemical Technology and Biotechnology, 89(7), 1023-1029. https://doi.org/10.1002/jctb.4195

Insomphun, C., Chuah, J.-A., Kobayashi, S., Fujiki, T., & Numata, K. (2017). Influence of hydroxyl groups on the cell viability of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomaterials Science and Engineering, 3(12), 3064-3075. https://doi.org/10.1021/acsbiomaterials.6b00279

Iqbal, N., & Amirul, A. A. (2014). Synthesis of P(3HB-co-4HB) copolymer with target-specific 4HB molar fractions using combinations of carbon substrates. Journal of Chemical Technology and Biotechnology, 89(3), 407-418. https://doi.org/10.1002/jctb.4133

Jendrossek, D., & Handrick, R. (2002). Microbial degradation of polyhydroxyalkanoates. Annual Review of Microbiology, 56, 403-432. https://doi.org/10.1146/annurev.micro.56.012302.160838

Kayser, A., Weber, J., Hecht, V., & Rinas, U. (2005). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology, 151(3), 693-706. https://doi.org/10.1099/mic.0.27481-0

Kim, B. S., Lee, S. C., Lee, S. Y., Chang, H. N., Chang, Y. K., & Woo, S. I. (1994). Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate control using on-line glucose analyzer. Enzyme and Microbial Technology, 16(7), 556-561. https://doi.org/10.1016/0141-0229(94)90118-X

Kim, Y., & Kim, D. H. (2018). Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers. Korean Journal of Chemical Engineering, 35(11), 2303-2312. https://doi.org/10.1007/s11814-018-0130-9

Kiselev, E. G., Demidenko, A. V., Zhila, N. O., Shishatskaya, E. I., & Volova, T. G. (2022). Sugar beet molasses as a potential c-substrate for PHA production by Cupriavidus necator. Bioengineering, 9(4), Article 154. https://doi.org/10.3390/bioengineering9040154

Koller, M. (2019). Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? The EuroBiotech Journal, 3(1), 32-44. https://doi.org/doi:10.2478/ebtj-2019-0004

Koller, M., Maršálek, L., Dias, M. M. D. S., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. https://doi.org/10.1016/j.nbt.2016.05.001

Koller, M., & Mukherjee, A. (2022). A new wave of industrialization of PHA biopolyesters. Bioengineering, 9(2). Article 74. https://doi.org/10.3390/bioengineering9020074

Kucera, D., Pernicová, I., Kovalcik, A., Koller, M., Mullerova, L., Sedlacek, P., Mravec, F., Nebesarava, J., Kalina, M., Marova, I., Krzyzanek, V., & Obruca, S. (2018). Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresource Technology, 256, 552-556. https://doi.org/10.1016/j.biortech.2018.02.062

Kung, Y., Ando, N., Doukov, T. I., Blasiak, L. C., Bender, G., Seravalli, J., Ragsdale, S. W., & Drennan, C. L. (2012). Visualizing molecular juggling within a B12-dependent methyltransferase complex. Nature, 484, 265-269. https://doi.org/10.1038/nature10916

Lau, N.-S., Chee, J.-Y., Tsuge, T., & Sudesh, K. (2010). Biosynthesis and mobilization of a novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer produced by Burkholderia sp. USM (JCM15050). Bioresource Technology, 101(20), 7916-7923. https://doi.org/10.1016/j.biortech.2010.05.049

Lee, W.-H., Azizan, M. N. M., & Sudesh, K. (2004). Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polymer Degradation and Stability, 84(1), 129-134. https://doi.org/10.1016/j.polymdegradstab.2003.10.003

Lim, S.-P., Gan, S.-N., & Tan, I. K. P. (2005). Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Applied Biochemistry and Biiotechnology, 126(1), 23-33. https://doi.org/10.1007/s12010-005-0003-7

Lin, L., Chen, J., Mitra, R., Gao, Q., Cheng, F., Xu, T., Zuo, Z., Xiang, H., & Han, J. (2021). Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Communications Biology, 4(1), Article 1007. https://doi.org/10.1038/s42003-021-02541-z

Lindahl, P. A. (2002). The Ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel? Biochemistry, 41(7), 2097-2105. https://doi.org/10.1021/bi015932+

Madden, L. A., Anderson, A. J., Asrar, J., Berger, P., & Garrett, P. (2000). Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. Polymer, 41(10), 3499-3505. https://doi.org/10.1016/S0032-3861(99)00611-4

Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews, 63(1), 21-53. https://doi.org/10.1128/mmbr.63.1.21-53.1999

Martin, D. P., & Williams, S. F. (2003). Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochemical Engineering Journal, 16(2), 97-105. https://doi.org/10.1016/S1369-703X(03)00040-8

Martin, W., & Russell, M. J. (2006). On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1486), 1887-1926. https://doi.org/10.1098/rstb.2006.1881

Massey, L. K., Sokatch, J. R., & Conrad, R. S. (1976). Branched-chain amino acid catabolism in bacteria. Bacteriological Reviews, 40(1), 42-54. https://doi.org/10.1128/br.40.1.42-54.1976

Matsumoto, K., Hori, C., Fujii, R., Takaya, M., Ooba, T., Ooi, T., Isono, T., Satoh, T., & Taguchi, S. (2018). Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromolecules, 19(2), 662-671. https://doi.org/10.1021/acs.biomac.7b01768

Matsumoto, K., Matsusaki, H., Taguchi, K., Seki, M., & Doi, Y. (2002). Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in Pseudomonas sp. 61-3. Biomacromolecules, 3(4), 787-792. https://doi.org/10.1021/bm025516k

Matsumoto, K., Shiba, T., Hiraide, Y., & Taguchi, S. (2017). Incorporation of glycolate units promotes hydrolytic degradation in flexible poly(glycolate-co-3-hydroxybutyrate) synthesized by engineered Escherichia coli. ACS Biomaterials Science and Engineering, 3(12), 3058-3063. https://doi.org/10.1021/acsbiomaterials.6b00194

Mitra, R., Xu, T., Chen, G.-Q., Xiang, H., & Han, J. (2022). An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microbial Biotechnology, 15(5), 1446-1470. https://doi.org/10.1111/1751-7915.13915

Mochizuki, M. (2005). Properties and application of aliphatic polyester products. Biopolymer Online. https://doi.org/10.1002/3527600035.bpol4001

Mohapatra, S., Maity, S., Dash, H. R., Das, S., Pattnaik, S., Rath, C. C., & Samantaray, D. (2017). Bacillus and biopolymer: Prospects and challenges. Biochemistry and Biophysics Reports, 12, 206-213. https://doi.org/10.1016/j.bbrep.2017.10.001

Mozumder, M. S. I., De Wever, H., Volcke, E. I. P., & Garcia-Gonzalez, L. (2014). A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochemistry, 49(3), 365-373. https://doi.org/10.1016/j.procbio.2013.12.004

Müller, V. (2003). Energy conservation in acetogenic bacteria. Applied Environmental Microbiology, 69(11), 6345-6353. https://doi.org/10.1128/aem.69.11.6345-6353.2003

Nishida, H., & Tokiwa, Y. (1993). Distribution of PHB and PCL aerobic degrading microorganisms in different environments. Journal of Environmental Polymer Degradation, 1, 227-233. https://doi.org/10.1007/BF01458031

Nomura, C. T., & Taguchi, S. (2007). PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Applied Microbiology and Biotechnology, 73(5), 969-979. https://doi.org/10.1007/s00253-006-0566-4

Pace, N. R. (2001). The universal nature of biochemistry. Proceedings of the National Academy of Sciences of the United State of America, 98(3), 805-808. https://doi.org/10.1073/pnas.98.3.805

Palmeiro-Sánchez, T., O’Flaherty, V., & Lens, P. N. L. (2022). Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology, 348, 10-25. https://doi.org/10.1016/j.jbiotec.2022.03.001

Park, S. J., Jang, Y.-A., Lee, H., Park, A.-R., Yang, J. E., Shin, J., Oh, Y. H., Song, B. K., Jegal, J., Lee, S. H., & Lee, S. Y. (2013). Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metabolic Engineering, 20, 20-28. https://doi.org/10.1016/j.ymben.2013.08.002

Park, S. J., & Lee, S. Y. (2003). Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. Journal of Bacteriology, 185(18), 5391-5397. https://doi.org/10.1128/jb.185.18.5391-5397.2003

Park, S. J., Lee, S. Y., Kim, T. W., Jung, Y. K., & Yang, T. H. (2012a). Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnology Journal, 7(2), 199-212. https://doi.org/10.1002/biot.201100070

Park, S. J., Lee, T. W., Lim, S.-C., Kim, T. W., Lee, H., Kim, M. K., Lee, S. H., Song, B. K., & Lee, S. Y. (2012b). Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 93(1), 273-283. https://doi.org/10.1007/s00253-011-3530-x

Pederson, E. N., McChalicher, C. W. J., & Srienc, F. (2006). Bacterial synthesis of PHA block copolymers. Biomacromolecules, 7(6), 1904-1911. https://doi.org/10.1021/bm0510101

Pernicova, I., Kucera, D., Nebesarova, J., Kalina, M., Novackova, I., Koller, M., & Obruca, S. (2019). Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresource Technology, 292, Article 122028. https://doi.org/10.1016/j.biortech.2019.122028

Phukon, P., Pokhrel, B., Konwar, B. K., & Dolui, S. K. (2013). Biosynthesis and characterization of a new copolymer, poly(3-hydroxyvalerate-co-5-hydroxydecenoate), from Pseudomonas aeruginosa. Biotechnology Letters, 35(4), 607-611. https://doi.org/10.1007/s10529-012-1119-9

Pieper-Fürst, U., Madkour, M. H., Mayer, F., & Steinbüchel, A. (1994). Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber. Journal of Bacteriology, 176(14), 4328-4337. https://doi.org/10.1128/jb.176.14.4328-4337.1994

Policastro, G., Panico, A., & Fabbricino, M. (2021). Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: a critical review. Reviews in Environmental Science and Bio/Technology, 20(2), 479-513. https://doi.org/10.1007/s11157-021-09575-z

Ponnusamy, S., Viswanathan, S., Periyasamy, A., & Rajaiah, S. (2019). Production and characterization of PHB-HV copolymer by Bacillus thuringiensis isolated from Eisenia foetida. Biotechnology and Applied Biochemistry, 66(3), 340-352. https://doi.org/10.1002/bab.1730

Pötter, M., & Steinbüchel, A. (2006). Biogenesis and structure of polyhydroxyalkanoate granules. In J. M. Shively (Ed.). Inclusions in prokaryotes (pp. 109-136). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-33774-1_5

Pu, N., Hu, P., Shi, L.-L., & Li, Z.-J. (2020). Microbial production of poly(3-hydroxybutyrate) from volatile fatty acids using the marine bacterium Neptunomonas concharum. Bioresource Technology Reports, 11, Article 100439. https://doi.org/10.1016/j.biteb.2020.100439

Ragsdale, S. W. (2008). Enzymology of the wood-Ljungdahl pathway of acetogenesis. Annals of the New York Academy of Sciences, 1125(1), 129-136. https://doi.org/10.1196/annals.1419.015

Reddy, M. V., Watanabe, A., Onodera, R., Mawatari, Y., Tsukiori, Y., Watanabe, A., Kudou, M., & Chang, Y.-C. (2020). Polyhydroxyalkanoates (PHA) production using single or mixture of fatty acids with Bacillus sp. CYR1: Identification of PHA synthesis genes. Bioresource Technology Reports, 11, Article 100483. https://doi.org/10.1016/j.biteb.2020.100483

Reddy, S. V., Thirumala, M., & Mahmood, S. K. (2009). Production of PHB and P (3HB-co-3HV) biopolymers by Bacillus megaterium strain OU303A isolated from municipal sewage sludge. World Journal of Microbiology and Biotechnology, 25(3), 391-397. https://doi.org/10.1007/s11274-008-9903-3

Rehm, B. H., Krüger, N., & Steinbüchel, A. (1998). A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. Journal of Biological Chemistry, 273(37), 24044-24051. https://doi.org/10.1074/jbc.273.37.24044

Rehm, B. H. A., & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 25(1), 3-19. https://doi.org/10.1016/S0141-8130(99)00010-0

Ren, Q., de Roo, G., Witholt, B., Zinn, M., & Thöny-Meyer, L. (2009). Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida GPo1. Microbial Cell Factories, 8(1), Article 60. https://doi.org/10.1186/1475-2859-8-60

Saito, Y., & Doi, Y. (1994). Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. International Journal of Biological Macromolecules, 16(2), 99-104. https://doi.org/10.1016/0141-8130(94)90022-1

Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer, 212, Article 123161. https://doi.org/10.1016/j.polymer.2020.123161

Shimizu, R., Chou, K., Orita, I., Suzuki, Y., Nakamura, S., & Fukui, T. (2013). Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiology, 13(1), Article 169. https://doi.org/10.1186/1471-2180-13-169

Silva, L. F., Gomez, J. G., Oliveira, M. S., & Torres, B. B. (2000). Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. Journal of Biotechnology, 76(2-3), 165-174. https://doi.org/10.1016/s0168-1656(99)00184-4

Sim, S. J., Snell, K. D., Hogan, S. A., Stubbe, J., Rha, C., & Sinskey, A. J. (1997). PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotechnology, 15(1), 63-67. https://doi.org/10.1038/nbt0197-63

Sridewi, N., Bhubalan, K., & Sudesh, K. (2006). Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polymer Degradation and Stability, 91(12), 2931-2940. https://doi.org/10.1016/j.polymdegradstab.2006.08.027

Steinbüchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience, 1(1), 1-24. https://doi.org/10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B

Steinbuchel, A., Aerts, K., Liebergesell, M., Wieczorek, R., Babel, W., Föllner, C., Madkour, M. H., Mayer, F., Pieper-Furst, U., Pries, A., & Valentin, H. E., . (1995). Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Canadian Journal of Microbiology, 41(Suppl 1), 94-105. https://doi.org/10.1139/m95-175

Steinbüchel, A., & Hein, S. (2001). Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Advances in Biochemical Engineering/ Biotechnology, 71, 81-123. https://doi.org/10.1007/3-540-40021-4_3

Steinbüchel, A., & Schlegel, H. G. (1991). Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Molecular Microbiology, 5(3), 535-542. https://doi.org/10.1111/j.1365-2958.1991.tb00725.x

Stubbe, J., & Tian, J. (2003). Polyhydroxyalkanoate (PHA) hemeostasis: the role of PHA synthase. Natural Product Reports, 20(5), 445-457. https://doi.org/10.1039/b209687k

Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. https://doi.org/10.1016/S0079-6700(00)00035-6

Svetlitchnyi, V., Dobbek, H., Meyer-Klaucke, W., Meins, T., Thiele, B., Römer, P., Huber, R., & Meyer, O. (2004). A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proceedings of the National Academy of Sciences of the United State of America, 101(2), 446-451. https://doi.org/10.1073/pnas.0304262101

Taidi, B., Anderson, A. J., Dawes, E. A., & Byrom, D. (1994). Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus. Applied Microbiology and Biotechnology, 40(6), 786-790. https://doi.org/10.1007/BF00173975

Tanadchangsaeng, N., Kitagawa, A., Yamamoto, T., Abe, H., & Tsuge, T. (2009). Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. Biomacromolecules, 10(10), 2866-2874. https://doi.org/10.1021/bm900696c

Tsuge, T., Watanabe, S., Sato, S., Hiraishi, T., Abe, H., Doi, Y., & Taguchi, S. (2007). Variation in copolymer composition and molecular weight of polyhydroxyalkanoate generated by saturation mutagenesis of Aeromonas caviae PHA synthase. Macromolecular Bioscience, 7(6), 846-854. https://doi.org/10.1002/mabi.200700023

Verlinden, R. A. J., Hill, D. J., Kenward, M. A., Williams, C. D., & Radecka, I. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology, 102(6), 1437-1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

Volant, C., Balnois, E., Vignaud, G., Magueresse, A., & Bruzaud, S. (2022). Design of polyhydroxyalkanoate (PHA) microbeads with tunable functional properties and high biodegradability in seawater. Journal of Polymers and the Environment, 30(6), 2254-2269. https://doi.org/10.1007/s10924-021-02345-6

Volbeda, A., & Fontecilla-Camps, J. C. (2006). Catalytic nickel–iron–sulfur clusters: From minerals to enzymes. In G. Simonneaux (Ed.). Bioorganometallic Chemistry (pp. 57-82). Springer Berlin Heidelberg. https://doi.org/10.1007/3418_003

Volova, T., Shishatskaya, E., Sevastianov, V., Efremov, S., & Mogilnaya, O. (2003). Results of biomedical investigations of PHB and PHB/PHV fibers. Biochemical Engineering Journal, 16(2), 125-133. https://doi.org/10.1016/S1369-703X(03)00038-X

Volova, T. G., Kiselev, E. G., Shishatskaya, E. I., Zhila, N. O., Boyandin, A. N., Syrvacheva, D. A., Vinogradova, O. N., Kalacheva, G. S., Vasiliev, A. D., & Peterson, I. V. (2013). Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresource Technolology, 146, 215-222. https://doi.org/10.1016/j.biortech.2013.07.070

Wang, H., Ye, J.-W., Chen, X., Yuan, Y., Shi, J., Liu, X., Yang, F., Ma, Y., Chen, J., Wu, F., Lan, Y., Wu, Q., Tong, Y., & Chen, G.-Q. (2023a). Production of PHA copolymers consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) by recombinant Halomonas bluephagenesis. Chemical Engineering Journal, 466, Article 143261. https://doi.org/10.1016/j.cej.2023.143261

Wang, J., Liu, S., Huang, J., Cui, R., Xu, Y., & Song, Z. (2023b). Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environmental Technology and Innovation, 30, Article 103069. https://doi.org/10.1016/j.eti.2023.103069

Wang, P., Chen, X. T., Qiu, Y. Q., Liang, X. F., Cheng, M. M., Wang, Y. J., & Ren, L. H. (2020). Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnology and Applied Biochemistry, 67(3), 307-316. https://doi.org/10.1002/bab.1848

Wang, Q., Liu, X., & Qi, Q. (2014). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Applied Microbiology and Biotechnology, 98(9), 3923-3931. https://doi.org/10.1007/s00253-013-5494-5

Wen, Q., Liu, B., Li, F., & Chen, Z. (2020). Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol. Bioresource Technology, 311, Article 123516. https://doi.org/10.1016/j.biortech.2020.123516

Weng, C., Tang, R., Peng, X., & Han, Y. (2023). Co-conversion of lignocellulose-derived glucose, xylose, and aromatics to polyhydroxybutyrate by metabolically engineered Cupriavidus necator. Bioresource Technology, 374, Article 128762. https://doi.org/10.1016/j.biortech.2023.128762

Wieczorek, R., Pries, A., Steinbüchel, A., & Mayer, F. (1995). Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. Journal of Bacteriology, 177(9), 2425-2435. https://doi.org/10.1128/jb.177.9.2425-2435.1995

Wróbel, M., Zebrowski, J., & Szopa, J. (2004). Polyhydroxybutyrate synthesis in transgenic flax. Journal of Biotechnology, 107(1), 41-54. https://doi.org/10.1016/j.jbiotec.2003.10.005

Xie, W. P., & Chen, G.-Q. (2008). Production and characterization of terpolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochemical Engineering Journal, 38(3), 384-389. https://doi.org/10.1016/j.bej.2007.08.002

Yang, J. E., Park, S. J., Kim, W. J., Kim, H. J., Kim, B. J., Lee, H., Shin, J., & Lee, S. Y. (2018). One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nature Communications, 9(1), Article 79. https://doi.org/10.1038/s41467-017-02498-w

Yuan, W., Jia, Y., Tian, J., Snell, K. D., Müh, U., Sinskey, A. J., Lambalot, R. H., Walsh, C. T., & Stubbe, J. (2001). Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies. Archives of Biochemistry and Biophysics, 394(1), 87-98. https://doi.org/10.1006/abbi.2001.2522

Zhang, S., Kamachi, M., Takagi, Y., Lenz, R., & Goodwin, S. (2001). Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases. Applied Microbiology and Biotechnology, 56(1-2), 131-136. https://doi.org/10.1007/s002530000562

Zhao, W., & Chen, G.-Q. (2007). Production and characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochemistry, 42(9), 1342-1347. https://doi.org/10.1016/j.procbio.2007.07.006