Evaluation of Organic Matter for Enhancing the Agro-physiological Traits of Rice cv. Banyuasin Planted under Saline Conditions
Main Article Content
Abstract
Salinity stress can inhibit the metabolic processes in plants via ionic stress, osmotic stress, and ion imbalance, affecting their agro-physiology. The application of organic matter (OM) in the planting media can improve soil quality so the plants can grow and develop optimally. Therefore, the use of superior rice variety as well as good land management, can be a solution for rice cultivation under saline conditions. This study evaluated the application of various sources of OM under saline conditions and their influence on the agro-physiological traits of rice cv. Banyuasin. This study was conducted from March to August 2021 using a pot experiment in the screen house of Universitas Perjuangan Tasikmalaya. Treatment was performed using one factor, types of OM, and four types (cow manure, rice husk, rice straw, and Azolla pinnata) were investigated. The four treatments were arranged in a completely randomized design with five replications. The study results showed that the addition of cow manure produced the highest shoot biomass, plant biomass, and chlorophyll content. Azolla pinnata produced the highest proline content, whereas rice husk and rice straw increased the nitrate reductase activity. Among the type of OM tested under saline conditions, the best agro-physiological variables were cow manure, followed by rice husk, rice straw, and Azolla pinnata. Hence, the use of rice cv. Banyuasin combined with four types of OM under saline conditions using agro-physiological traits was a novel approach in this study.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(18), 1-38. https://doi.org/10.3390/agronomy7010018
Adlian, A., Kurniasih, B., & Indradewa, D. (2020). Effect of saline irrigation method on the growth of rice (Oryza sativa L.). Ilmu Pertanian (Agricultural Science), 5(1), 19-24. https://doi.org/10.22146/ipas.24892
Ali, M. M., Jeddi, K., Attia, M. S., Elsayed, S. M., Yusuf, M., Osman, M. S., Soliman, M. H., & Hessini, K. (2021). Wuxal amino (Bio stimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential. Saudi Journal of Biological Sciences, 28(6), 3204-3214. https://doi.org/10.1016/j.sjbs.2021.04.040
Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., & Suwarno, W. B. (2019). Selection index based on multivariate analysis for selecting doubled-haploid rice lines in lowland saline prone area. Sabrao Journal of Breeding and Genetics, 51(2), 161-174.
Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., Suwarno, W. B., & Safitri, H. (2018). Determination of selection criteria for screening of rice genotypes for salinity tolerance. SABRAO Journal of Breeding and Genetics, 50(3), 279-294.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Chemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
Berger, A., Araujo, N. H., Hanchi, M., Rolin, D., Boscari, A., Maucourt, M., Bernillon, S., Puppo, A., & Brouquisse, R. (2020). Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncaluta-Sinorhizobium meliloti symbiosis. Frontiers in Plant Science, 11, Article 01313. https://doi.org/10.3389/fpls.2020.01313
Chen, J., Hu, G., Wang, H., & Fu, W. (2023). Leaching and migration characteristics of nitrogen during coastal saline soil remediation by combining humic acid with gypsum and bentonite. Annals of Agricultural Sciences, 68(1), 1-11. https://doi.org/10.1016/j.aoas.2023.02.001.
Cheng, Y., Lui, M., Zhang, T., Yan, S., Wang, C., Dong, Q., Feng, H., Zhang, T., & Kisekka, I. (2023). Organic substitution improves soil structure and water and nitrogen status to promote sunflower (Helianthus annus L.) growth in an arid saline area. Agriculture Water Management, 283, Article 108320. https://doi.org/10.1016/j.agwat.2023.108320
da Silva, J. O. N., Pessoa, L. G. M., da Silva, E. M., da Silva, L. R., Freire, M. B. G. D. S., de Souza, E. S., Ferreira-Silva, S. L., de Franca, J. G. E., da Silva, T. G. F., & Alencar, E. L. D. N. (2023). Effects of silicon alone and combined with organic matter and Trhochoderma harzianum on sorghum yield, ions accumulation and soil properties under saline irrigation. Agriculture, 13(11), Article 2146. https://doi.org/10.3390/agriculture13112146
da-Silva, M.E.J., Mathe, L.O.J., Van-Rooyen, I.L., Brink, H.G., and Nicol, W. 2022. Optimal growth conditions for Azolla pinnata R. Brown: impacts of light intensity, nitrogen addition, pH control, and humidity. Plants, 11(8), 37-41, https://doi.org/10.3390/plants11081048
Demir, Z., & Gülser, C. (2021). Effects of rice husk compost on some soil properties, qater use efficiency and tomato (Solanum lycopersicum L.) yield under greenhouse and field conditions. Communications in Soil Science and Plant Analysis, 52(9), 1051-1068. https://doi.org/10.1080/00103624.2021.1892731
Diacono, M., & Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendmnents in salt-affected soils. Agriculture, 5(2), 221-230. https://doi.org/10.3390/agriculture5020221
Elhabet, H. (2018). Effect of organic and inorganic fertilizers on rice and some nutrients availability under different water regimes. Journal of Agricultural Science and Food Research, 9(4), 1-16.
Feng, X., Hussain, T., Guo, K., An, P., & Liu, X. (2021). Physiological, morphological and anatomical responses of Hibiscus moscheutos to non-uniform salinity stress. Environmental and Experimental Botany, 182, Article 104301. https://doi.org/10.1016/j.envexpbot.2020.104301
Fromm, H. (2019). Root plasticity in the pursuit of water. Plants, 8(7), Article 236. https://doi.org/10.3390/plants80700236
Hariadi, Y. C., Nurhayati, A. Y., Soeparjono, S., & Arif, I. (2015). Screening six varieties of rice (Oryza sativa) for salinity tolerance. Procedia Environmental Sciences, 28, 78-87. https://doi.org/10.1016/j.proenv.2015.07.012
Ibarra-Villarreal, A. L., Gándara-Ledezma, A., Godoy-Flores, A. D., Herrera-Sepúlveda, A., Díaz-Rodríguez, A. M., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2021). Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum). Journal of Arid Environments, 186, Article 104399. https://doi.org/10.1016/j.jaridenv.2020.104399
Ijaz, U., Ahmed, T., Rizwan, M., Noman, M., Shah, A. A., Azeem, F., Alharby, H. F., Bamagoos, A. A., Alharbi, B. M., & Ali. S. (2023). Rice straw based silicon nanoparticles improve morphological and nutrient profile of rice plants under salinity stress by triggering physiological and genetic repair mechanisms. Plant Physiology and Biochemistry, 201, Article 107788. https://doi.org/10.1016/j.plaphy.2023.107788
Irin, I. J., & Hasanuzzaman, M. (2024). Organic amendments: enhancing plant tolerance to salinity and metal stress for improved agricultural productivity. Stresses, 4(1), 185-209. https://doi.org/10.3390/stresses4010011
Kusmiyati, F., Purbajanti, E. D., & Surahmanto, S. (2018). The effects of manure at saline soil on growth, dry matter production and crude protein of Sesbania grandiflora. IOP Conference Series Earth and Environmental Science, 119(1), Article 012023. https://doi.rog/10.1088/1755-1315/119/1/012023
Li, Y., Xu, X., Lei, B., Zhuang, J., Zhang, X., Hu, C., Cui, J., & Liu, Y. (2021). Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 422, Article 130114. https://doi.org/10.1016/j.cej.2021.130114
Liu, C., Wang, S., Zhao, Y., Wang, Y., Zhu, E., Jia, J., Lui, Z., He, J.-S., & Feng, X. (2023). Enhanced microbial contribution to mineral-associated organic carbon accrual in drained wetlands: Beyond direct lignin-iron interactions. Soil Biology and Biochemistry, 185, Article 109152. https://doi.org/10.1016/j.soilbio.2023.109152
Lokeshkumar, B. M., Krishnamurthy, S. L., Rathor, S., Warriach, A. S., Vinaykumar, N. M., Dushyanthakumar, B. M., & Sharma, P. C. (2023). Morphophysiological diversity and haplotype analysis of saltol QTL region in diverse rice landraces for salinity tolerance. Rice Science, 30(4), 306-320. https://doi.org/10.1016/j.rsci.2023.02.001
Ma, G., Cheng, S., He, W., Dong, Y., Qi, S., Tu, N., & Tao, W. (2023). Effects of organic and inorganic fertilizers on soil nutrients conditions in rice fields with varying soil fertility. Land, 12(5), Article 1026. https://doi.org/10.3390/land12051026
Maghfiroh, C. N., Putra, E. T. S., & Hs, E. S. D. (2020). Root detection by resistivity imaging and physiological activity with the dead-end trench on three clones of cocoa (Theobroma cacao). Biodiversitas Journal of Biological Diversity, 21(6), 2794-2803. https://doi.org/10.13057/biodiv/d210656
Matosic, S., Birkas, M., Vukadinovic, V., Ivica, K., & Bogunovic, I. (2018). Tillage, manure and gypsum use in reclamation of saline-sodic soils. Agriculturae Conspectus Scientificus, 83(2), 131-138.
Mona, S. A., Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Soliman, D. W. K., Wirth, S., & Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16(8), 1751-1757. http://doi.org/10.1016/S2095-3119(17)61695-2
Moreno, S., Canales, J., Hong, L., Robinson, D., Roeder, A. H. K., & Gutierrez, R. A. (2020). Nitrate defines shoot size through compensatory roles for endoreplication and cell division in Arabidopsis thaliana. Current Biology, 30, 1988-2000. https://doi.org/10.1016/j.cub.2020.03.036
Muflikhah, N., Kurniasih, B., & Tohari, T. (2018). Growth and yield of rice (Oryza sativa L.) under raised- and sunken-bed system as affected by saline irrigation in Baros, Bantul, Yogyakarta. Ilmu Pertanian (Agricultural Science), 3(2), 110-116. https://doi.org/10.22146/ipas32153
Munns, R., & Tester, M., (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Naseem, A., Iqbal, S., Jabeen, K., Umar, A., Alharbi, K., Antar, M., Gradecka-Jakubowska, K., Gacarz, M., & Ali, I. (2023). Organic amendments improve salinity-induced osmotic and oxidative stress tolerance in Okra (Abelmoschus esculentus (L.) Moench). BMC Plant Biology, 23(1), Article 522. https://doi.org/10.1186/s12870-023-04527-x
Nasrudin, N., Isnaeni, S., & Fahmi, P. (2022a). The effect of high salt stress on the agronomic, chlorophyll content, and yield characteristics of several rice varieties. IOP Conference Series: Earth and Environmental Science, 995, Article 012028. https://doi.org/10.1088/1755-1315/995/1/012028
Nasrudin, N., Rosmala, A., & Wijoyo, R. B. (2022b). Application of silica nutrients improves plant growth and biomass production of paddy under saline conditions. Caraka Tani Journal of Sustainable Agriculture, 37(1), 111-122. https://doi.org/10.20961/carakatani.v37i1.43425
Oelviani, R., Adiyoga, W., Bakti, I. G. M. Y., Suhendrata, T., Malik, A., Chanifah, C., Samijan, S., Sahara, D., Sutanto, H. A., Wulanjari, M. E., Utomo, B., Susila, A., Jatuningtyas, R. K., & Sihombing, Y. (2024). Climate change driving salinity: an overview of vulnerabilities, adaptations, and challenges for Indonesian agriculture. Weather Climate Society, 16, 29-49. https://doi.org/10.1175/WCAS-D-23-0025-1
Rad, H. R., Aref, F., & Rezaei, M. (2012). Response of rice to different salinity levels during different growth stages. Research Journal of Applied Sciences, Engineering and Technology, 4(17), 3040-3047.
Ran, C., Gao, D., Bai, T., Geng, Y., Shao, X., & Guo, L. (2023). Straw return alleviates the negative effects of saline sodic stress on rice by improving soil chemistry and reducing the accumulation of sodium ions in rice leaves. Agriculture, Ecosystems and Environment, 342, Article 108253. https://doi.org/10.1016/j.agee.2022.108253
Seeda, A. M. A., El-Nour, E. A. A. A., Abdallah, M. M. S., El-Bassiouny, H. M. S., & El-Monem, A. A. A. (2022). Impacts of salinity stress on plants and their tolerance strategies: a review. Middle East Journal of Applied Sciences, 12(3), 282-400. https://doi.org/10.36632/mejas/2022.12.3.27
Setiawati, M. R., Suryatmana, P., Budiasih, B., Sondari, N., Nurlina, L., Nurnani, B. A., & Harlia, E. (2018). Utilization Azolla pinnata as substitution of manure to improve organic rice yield and paddy soil health. IOP Conference Series: Earth and Environmental Science, 215(1), Article 012006. https://doi.org/10.1088/1755-1315/215/1/012006
Shaaban, M., Wu, Y., Nunez-Delgado, A., Kuzyakov, Y., Peng, Q., Lin, S., & Hu, R. (2023). Enzyme activities and organic matter mineralization in response to application of gypsum, manure and rice straw in saline and sodic soils. Environmental Research, 224, Article 115393. https://doi.org/10.1016/j.envres.2023.115393
Shafi, M., Khan, M. J., Bakht, J., & Khan, M. A. (2013). Response of wheat genotypes to salinity under field environment. Pakistan Journal of Botany, 45(3), 787-794.
Staszel, K., Lasota, J., & Błońska, E. (2022). Soil organik matter fractions in relation to root characteristics of different tree species in altitude gradient of temperate forest in Carpathian Mountains. Forests, 13(10), Article 1656. https://doi.org/10.3390/f13101656
Subardja, V. O., Anas, I., & Widyastuti, R. (2016). Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI) method in saline soil. Journal of Degraded Mining Lands Managements, 3(2), 543-549. https://doi.org/10.15243/jdmlm.2016.032.543
Sudaryanto, R., Supriyadi, S., & Mufid, D. (2015). Characteristics and land suitability of newly established rice field in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera. Journal of Degraded Mining Lands Managements, 2(3), 369-549. https://doi.org/10.15243/jdmlm.2015.023.369
Sudarsono, W. A., Melati, M., & Aziz, S. A. (2014). Growth and yield of organic rice with cow manure application in the first cropping season. Agrivita, 36(1), 19-26. https://doi.org/10.17503/agrivita-2014-36-1-p019-025
Sun, T., Liu, B., Hasegawa, T., Liao, Z., Tang, L., Liu, L., Cao, W., & Zhu, Y. (2023). Sink-source unbalance leads to abnormal partitioning of biomass and nitrogen in rice under extreme heat stress: An experimental and modeling study. European Journal of Agronomy, 142, Article 126678. https://doi.org/10.1016/j.eja.2022.126678
Unnikhrishnan, B. V., Binitha, N. K., & Mohan, M. (2022). Distinct microbiome and nutrient status of a saline hydromorphic soil under rice cultivation in comparison with laterite soil. Ecological Genetics and Genomics, 24, Article 100133. https://doi.org/10.1016/j.egg.2022.100133
Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., & Pospíšilová, L. (2021). The soil organic matter in connection with soil properties and soil inputs. Agronomy, 11(4), 1-21. https://doi.org/10.3390/agronomy11040779
Wang, G., Zeng, F., Song, P., Sun, B., Wang, Q., & Wang, J. (2022). Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. Journal of Plant Physiology, 272, Article 153669. https://doi.org/10.1016/j.jplph.2022.153669
Wang, X., Yan, J., Zhang, X., Zhang, S., & Chen, Y. (2020). Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays L.) productivity on the Loess Plateau. PLOS ONE, 15(8), Article e0238042. http://dx.doi.org/10.1371/journal.pone.0238042
Wibowo, F., & Harahap, A. (2018). Response of ameliorant giving to soybean (Glycine max (L.) Merril) on salinity land. Proceeding International Conference Sustainable Agriculture and Natural Resources Management (pp. 95-98).
Winck, J. E. M., Tagliapietra, E. L., Schneider, R. A., Injlman, V. B., Nora, M. D., Savengnago, C., Paula, L. S., da-silva, M. R., Zanon, A. J., & Streck, N. A. (2023). Decomposition of yield gap of soybean in environment × genetics × management in Southern Brazil. European Journal of Agronomy, 145, Article 125795. https://doi.org/10.1016/j.eja.2023.126795
Xiaoqin, S., Dongli, S., Yuanhang, F., Hongde, W., & Lei, G. (2021) Three-dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar-amended saline soil. Soil and Tillage Research, 205, 104809, https://doi.org/10.1016/j.still.2020.104809
Yamika, W. S. D., Aini, N., Setiawan, A., & Purwaningrahayu, R. D. (2018). Effect of gypsum and cow manure on yield, proline content, and K/Na ratio of soybean genotypes under saline conditions. Journal of Degraded and Mining Lands Managements, 5(2), 1047-1053. https://doi.org/10.15243/jdmlm.2018.052.1047
Yang, X., Yang, G., Wei, X., Huang, W., & Fang, Z. (2023). OsAAP15, an amino acid transporter in response to nitrogen concentration, mediates panicle branching and grain yield in rice. Plant Science, 330, Article 111640. https://doi.org/10.1016/j.plantsci.2023.111640
Zhang, L.-L., Zhou, X.-L., Fan, Y., Fu, J., Hou, P., Yang, H.-L., & Qi, H. (2019). Post-silking nitrogen accumulation and remobilization are associated with green leaf persistence and plant density in maize. Journal of Integrative Agriculture, 18(8), 1882-1892. http://doi.org/10.1016/S2095-3119(18)62087-8
Zheng, C., Liu, C., Liu, L., Tan, Y., Sheng, X., Yu, D., Sun, Z., Sun, X., Chen, J., Yuan, D., & Duan, M. (2023). Effect of salinity stress on rice yield and grain quality: A meta-analysis. European Journal of Agronomy, 144, Article 126765. https://doi.org/10.1016/j.eja.2023.126765
Zhou, Z., Struik, P. C., Gu, J., van der Putten, P. E. L., Wang, Z., Yin, X., & Yang, J. (2023). Enhancing leaf photosynthesis from altered chlorophyll content requires optimal partitioning of nitrogen. Crop and Environment, 2(1), 24-36. https://doi.org/10.1016/j.crope.2023.02.001
Zurhalena, Z., Endriani, E., Farni, Y., & Fuadi, N. A. (2023). Application of cow manure and Gliricidia sepium pruning compost to improve physical properties of Ultisols and soybean yield. Journal of Degraded and Mining Lands Managements, 10(3), 4527-4535. https://doi.org/1015243/jdmlm.2023.103.4527