The Effect of Polyethylene Terephthalate and Low-density Polyethylene Microplastics in Organic Material on Vermicomposting Process
Main Article Content
Abstract
Despite extensive research on microplastics (MPs) present in solid organic waste, the precise impact of MPs on the vermicomposting process remains poorly understood. The objective of this research was to assess the influence of particular MP polymers on the vermicomposting procedure. To investigate the effects of MP particles on vermicomposting, low-density polyethylene (LDPE) and polyethylene terephthalate (PET) particles were added to organic material. As vermicomposting process indicators, the germination index (GI), carbon-to-nitrogen (C/N) ratio, survival rate, pH, and electrical conductivity (EC) were identified. In this study, the survival rate, pH, C/N, EC, and GI values indicated that the addition of different varieties of MP polymers had a detrimental effect on composting that was direct and proportional. PET and LDPE significantly reduced earthworm survival rates by 10.51% and 14.52%, respectively. The addition of LDPE resulted in a substantial decrease in pH, likely attributable to its chemical constituents. Furthermore, treatments involving LDPE exhibited elevated electrical conductivity (EC) and carbon-to-nitrogen (C/N) ratio values. Nevertheless, the germination index (GI) effect of LDPE was markedly lower than that of PET. The findings of this research will contribute to the comprehension of the ecotoxicological impacts that polymer MPs have on the process of vermicomposting.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Angmo, D., Dutta, R., Singh, J., Chowdhary, A. B., Quadar, J., Thakur, B., Kaur, H., Sharma, M., Singh, S., & Vig, A. P. (2023). Biochemical responses, growth and reproduction of earthworm in low density polyethylene (LDPE). Environmental Quality Management, 33(1), 223-237. https://doi.org/10.1002/tqem.22041
Barnard, E., Rubio Arias, J. J., & Thielemans, W. (2021). Chemolytic depolymerisation of PET: a review. Green Chemistry, 23(11), 3765-3789. https://doi.org/10.1039/D1GC00887K
Bhat, S. A., Singh, J., & Vig, A. P. (2017). Instrumental characterization of organic wastes for evaluation of vermicompost maturity. Journal of Analytical Science and Technology, 8(1), Article 2. https://doi.org/10.1186/s40543-017-0112-2
Borriello, L., Scivicco, M., Cacciola, N. A., Esposito, F., Severino, L., & Cirillo, T. (2023). Microplastics, a global issue: Human exposure through environmental and dietary sources. Foods, 12(18), Article 3396. https://doi.org/10.3390/foods12183396
Chen, M., Liu, S., Bi, M., Yang, X., Deng, R., & Chen, Y. (2022). Aging behavior of microplastics affected DOM in riparian sediments: From the characteristics to bioavailability. Journal of Hazardous Materials, 431, Article 128522. https://doi.org/10.1016/j.jhazmat.2022.128522
Cui, G., Lü, F., Hu, T., Zhang, H., Shao, L., & He, P. (2022). Vermicomposting leads to more abundant microplastics in the municipal excess sludge. Chemosphere, 307, Article 136042. https://doi.org/10.1016/j.chemosphere.2022.136042
Datta, D., & Halder, G. (2019). Effect of rice husk derived nanosilica on the structure, properties and biodegradability of corn-starch/LDPE composites. Journal of Polymers and the Environment, 27(4), 710-727. https://doi.org/10.1007/s10924-019-01386-2
Devi, C., & Khwairakpam, M. (2023). Weed biomass: Bioconversion through composting followed by vermicomposting to optimize time required. Bioresource Technology Reports, 21, Article 101326. https://doi.org/10.1016/j.biteb.2022.101326
Ducasse, V., Capowiez, Y., & Peigné, J. (2022). Vermicomposting of municipal solid waste as a possible lever for the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 42(5), Article 89. https://doi.org/10.1007/s13593-022-00819-y
Edo, C., Fernández-Piñas, F., & Rosal, R. (2022). Microplastics identification and quantification in the composted organic fraction of municipal solid waste. Science of The Total Environment, 813, Article 151902. https://doi.org/10.1016/j.scitotenv.2021.151902
Fard, N. J. H., Jahedi, F., & Dehdarirad, H. (2023). The possibility of microplastic removal by earthworms and comparing with conventional chemical removal methods (a global and deeply systematic review). Journal of Polymers and the Environment, 12, 5050-5064. https://doi.org/10.1007/s10924-023-02954-3
Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, Article 124482. https://doi.org/10.1016/j.chemosphere.2019.124482
Garfansa, M. P., Zalizar, L., Husen, S., Triwanto, J., Iswahyudi, I., & Ekalaturrahmah, Y. A. C. (2024). Fate and distribution of microplastics in water and sediment collected from Samiran ditch irrigation. Environmental Quality Management, 34(1), Article e22204. https://doi.org/10.1002/tqem.22204
Gupta, R., & Garg, V. K. (2008). Stabilization of primary sewage sludge during vermicomposting. Journal of Hazardous Materials, 153(3), 1023-1030. https://doi.org/10.1016/j.jhazmat.2007.09.055
Hénault-Ethier, L., Bell, T. H., Martin, V. J. J., & Gélinas, Y. (2016). Dynamics of physicochemical variables and cultivable bacteria in vermicompost during steady food waste addition and upon feed interruption. Compost Science & Utilization, 24(2), 117-135. https://doi.org/10.1080/1065657X.2015.1087895
In, Y.-W., Kim, J.-J., Kim, H.-J., & Oh, S.-W. (2013). Antimicrobial activities of acetic acid, citric acid and lactic acid against shigella species. Journal of Food Safety, 33(1), 79-85. https://doi.org/10.1111/jfs.12025
Iswahyudi, I., Sutanto, A., Widodo, W., Warkoyo, W., Yuniwati, E. D., Garfansa, M. P., Ekalaturrahmah, Y. A. C., Sugiono, S., Ramadani, S. D., & Setyobudi, R. H. (2024a). Impact of microplastics on the carbon and nitrogen of vermicompost. Environmental Quality Management, 34(2), Article e22325. https://doi.org/10.1002/tqem.22325
Iswahyudi, I., Syafiuddin, A., & Boopathy, R. (2024b). A mini review on biologically innovative solution for biodegradation of plastics/microplastics by the use of superworms. Current Pollution Reports, 11(1), Article 5. https://doi.org/10.1007/s40726-024-00335-5
Iswahyudi, I., Widodo, W., Warkoyo, W., Setyobudi, R. H., Damat, D., Roeswitawati, D., Anwar, S., Subchi, T. D. N., Utarid, I. R., Garfansa, M. P., Sholeh, M. S., Ekawati, I., Tonda, R., Mujiyanti, W. A., Ra, D. S., Lestari, S. U., & Anam, C. (2024c). Effect of high-density polyethylene, polyvinyl chloride and low-density polyethylene microplastics on seeding of paddy. Sarhad Journal of Agriculture, 39(Special issue 1), 67-70. https://doi.org/10.17582/journal.sja/2023/39/s1.61.70
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Garfansa, M. P., Mujiyanti, W. A., & Sholeh, M. S. (2024d). Investigating the impact of microplastics type of polyethylene, polypropylene, and polystyrene on seed germination and early growth of rice plants. Environmental Quality Management, 34(1), Article e22287. https://doi.org/10.1002/tqem.22287
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Garfansa, M. P., & Septia, E. D. (2024e). Determination and quantification of microplastics in compost. Environmental Quality Management, 34(1), Article 22184. https://doi.org/10.1002/tqem.22184
Iswahyudi, I., Widodo, W. W., Warkoyo, Setyobudi, R. H., Sutanto, A., Wedyan, M., Anwar, S., Garfansa, M. P., Ekalaturrahmah, Y. A. C., Yunita, E., & Sustiyana, S. (2023). Bibliometric analysis on contaminant microplastics in compost (2018 to 2022) through VOSviewer. E3S Web of Conferences, 432(1), 13-26 https://doi.org/10.1051/e3sconf/202343200015
Jabłońska, B., Kiełbasa, P., Korenko, M., & Dróżdż, T. (2019). Physical and chemical properties of waste from pet bottles washing as a component of solid fuels. Energies, 12(11), Article 2197. https://doi.org/10.3390/en12112197
Jebashalomi, V., Charles, P. E., & Rajaram, R. (2024). Microbial degradation of low-density polyethylene (LDPE) and polystyrene using Bacillus cereus (OR268710) isolated from plastic-polluted tropical coastal environment. Science of the Total Environment, 924, Article 171580. https://doi.org/10.1016/j.scitotenv.2024.171580
Jiang, Y., Liu, Y., Zhang, X., Gao, H., Mou, L., Wu, M., Zhang, W., Xin, F., & Jiang, M. (2021). Biofilm application in the microbial biochemicals production process. Biotechnology Advances, 48, Article 107724. https://doi.org/10.1016/j.biotechadv.2021.107724
Karapantzou, I., Mitropoulou, G., Prapa, I., Papanikolaou, D., Charovas, V., & Kourkoutas, Y. (2023). Physicochemical changes and microbiome associations during vermicomposting of winery waste. Sustainability, 15(9), Article 7484. https://doi.org/10.3390/su15097484
Katiyar, R. B., Sundaramurthy, S., Sharma, A. K., Arisutha, S., Pratap-Singh, A., Mishra, S., Ayub, R., Jeon, B.-H., & Khan, M. A. (2023). Vermicompost: An eco-friendly and cost-effective alternative for sustainable agriculture. Sustainability, 15(20), Article 14701. https://doi.org/10.3390/su152014701
Kong, Y., Wang, G., Chen, W., Yang, Y., Ma, R., Li, D., Shen, Y., Li, G., & Yuan, J. (2022). Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator. Ecotoxicology and Environmental Safety, 247, Article 114251. https://doi.org/10.1016/j.ecoenv.2022.114251
Li, B., & Shen, Y. (2021). Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China. Land Use Policy, 100, Article 105124. https://doi.org/10.1016/j.landusepol.2020.105124
Li, J., Meng, Q., Xing, J., Wang, C., Song, C., Ma, D., & Shan, A. (2022). Citric acid enhances clean recycling of Chinese cabbage waste by anaerobic fermentation. Journal of Cleaner Production, 348, Article 131366. https://doi.org/10.1016/j.jclepro.2022.131366
Marco, B. Z. E., Sáez, J. A., Pedraza Torres, A. M., Martínez Sabater, E., Orden, L., Andreu-Rodríguez, F. J., Bustamante, M. A., Marhuenda-Egea, F. C., López, M. J., Suárez-Estrella, F., & Moral, R. (2023). Effect of agricultural microplastic and mesoplastic in the vermicomposting process: Response of Eisenia fetida and quality of the vermicomposts obtained. Environmental Pollution, 333, 122027. https://doi.org/10.1016/j.envpol.2023.122027
Miao, L., Wang, Y., Zhang, M., Feng, Y., Wang, L., Zhang, H., & Zhu, W. (2023). Effects of hydrolyzed polymaleic anhydride addition combined with vermicomposting on maturity and bacterial diversity in the final vermicompost from the biochemical residue of kitchen waste. Environmental Science and Pollution Research, 30(4), 8998-9010. https://doi.org/10.1007/s11356-022-20795-w
Nisticò, R. (2020). Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 90, Article 106707. https://doi.org/10.1016/j.polymertesting.2020.106707
Oyege, I., & Balaji, M S. B. (2023). Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Systems, 7(4), Article 101. https://doi.org/10.3390/soilsystems7040101
Palansooriya, K. N., Shi, L., Sarkar, B., Parikh, Sanjai J., Sang, M. K., Lee, S.-R., & Ok, Y. S. (2022). Effect of LDPE microplastics on chemical properties and microbial communities in soil. Soil Use and Management, 38(3), 1481-1492. https://doi.org/10.1111/sum.12808
Ragoobur, D., Huerta-Lwanga, E., & Somaroo, G. D. (2022). Reduction of microplastics in sewage sludge by vermicomposting. Chemical Engineering Journal, 450, Article 138231. https://doi.org/10.1016/j.cej.2022.138231
Ratnasari, A., Syafiuddin, A., Mehmood, M. A., & Boopathy, R. (2023). A review of the vermicomposting process of organic and inorganic waste in soils: Additives effects, bioconversion process, and recommendations. Bioresource Technology Reports, 21, Article 101332. https://doi.org/10.1016/j.biteb.2023.101332
Raza, S. T., Wu, J., Rene, E. R., Ali, Z., & Chen, Z. (2022). Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. Journal of Cleaner Production, 360, Article 132200. https://doi.org/10.1016/j.jclepro.2022.132200
Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 15221. https://doi.org/10.1038/nplants.2015.221
Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495-503. https://doi.org/10.1016/j.envpol.2016.09.092
Sáez, J. A., Torres, A. M., Marco, Z. E. B., Andreu-Rodríguez, F. J., Marhuenda-Egea, F. C., Martínez-Sabater, E., López, M. J., Suarez-Estrella, F., & Moral, R. (2022). The effects of agricultural plastic waste on the vermicompost process and health status of Eisenia fetida. Agronomy, 12(10), Article 2547. https://doi.org/10.3390/agronomy12102547
Sanchez-Hernandez, J. C., Capowiez, Y., & Ro, K. S. (2020). Potential Use of Earthworms to Enhance Decaying of Biodegradable Plastics. ACS Sustainable Chemistry & Engineering, 8(11), 4292-4316. https://doi.org/10.1021/acssuschemeng.9b05450
Sobhani, Z., Panneerselvan, L., Fang, C., Naidu, R., & Megharaj, M. (2022). Chronic and transgenerational effects of polyethylene microplastics at environmentally relevant concentrations in earthworms. Environmental Technology & Innovation, 25, Article 102226. https://doi.org/10.1016/j.eti.2021.102226
Tammam, A. A., Shehata, M. R. A. M., Pessarakli, M., & El-Aggan, W. H. (2023). Vermicompost and its role in alleviation of salt stress in plants – I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. Journal of Plant Nutrition, 46(7), 1446-1457. https://doi.org/10.1080/01904167.2022.2072741
Wang, T., Wang, L., Chen, Q., Kalogerakis, N., Ji, R., & Ma, Y. (2020). Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of The Total Environment, 748, Article 142427. https://doi.org/10.1016/j.scitotenv.2020.142427
Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092
Xing, M., Lv, B., Zhao, C., & Yang, J. (2015). Towards understanding the effects of additives on the vermicomposting of sewage sludge. Environmental Science and Pollution Research, 22(6), 4644-4653. https://doi.org/10.1007/s11356-014-3708-8
Xu, G., Liu, Y., Song, X., Li, M., & Yu, Y. (2021a). Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms. Journal of Hazardous Materials, 403, Articl 123966. https://doi.org/10.1016/j.jhazmat.2020.123966
Xu, G., Yang, Y., & Yu, Y. (2021b). Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-)metals in earthworms. Environmental Pollution, 291, Article 118194. https://doi.org/10.1016/j.envpol.2021.118194
Xu, Z., Bai, X., Li, Y., Weng, Y., & Li, F. (2023). New insights into the decrease in Cd2+ bioavailability in sediments by microplastics: Role of geochemical properties. Journal of Hazardous Materials, 442, Article 130103. https://doi.org/10.1016/j.jhazmat.2022.130103
Zangmeister, C. D., Radney, J. G., Benkstein, K. D., & Kalanyan, B. (2022). Common single-use consumer plastic products release trillions of sub-100 nm nanoparticles per liter into water during normal use. Environmental Science & Technology, 56(9), 5448-5455. https://doi.org/10.1021/acs.est.1c06768
Zhang, S., Li, Y., Chen, X., Jiang, X., Li, J., Yang, L., Yin, X., & Zhang, X. (2022). Occurrence and distribution of microplastics in organic fertilizers in China. Science of The Total Environment, 844, Article 157061. https://doi.org/10.1016/j.scitotenv.2022.157061
Zhong, H., Yang, S., Zhu, L., Liu, C., Zhang, Y., & Zhang, Y. (2021). Effect of microplastics in sludge impacts on the vermicomposting. Bioresource Technology, 326, Article 124777. https://doi.org/10.1016/j.biortech.2021.124777
Zhou, Y., Ren, X., Tsui, T.-H., Barcelo, D., Wang, Q., Zhang, Z., & Yongzhen, D. (2023). Microplastics as an underestimated emerging contaminant in solid organic waste and their biological products: Occurrence, fate and ecological risks. Journal of Hazardous Materials, 445, Article 130596. https://doi.org/10.1016/j.jhazmat.2022.130596