Determination of Significant Factors and Optimum Condition for Pineapple Leaf Fiber Extraction as Potential Dielectric Material
Main Article Content
Abstract
The aim in this study was to evaluate the most significant factor affecting the extraction of pineapple leaf fibers and to optimize the extraction conditions. The selected four factors of pineapple leaf powder mass, pineapple leaves to distilled water ratio, pulping time, and heating option were analyzed through two-level factorial analysis via Design-Expert software. The optimum conditions were determined using central composite design (CCD) of response surface methodology (RSM). The extracted fibers were analyzed through the Kurschner-Hanack method for cellulose content and were used to produce dielectric materials. The permittivity value of the developed dielectric material was measured through an Agilent vector network analyzer (VNA). The best condition was obtained with a heated sample at 3 g pineapple leaf powder mass, 1:10 PL: DW, and 49.24 min pulping time, which produced 59.25% cellulose content and 2.89 permittivity value. The optimum condition was achieved at 50 min of pulping time and 1000 mL water with 46.84% cellulose content and 2.97 permittivity value. Therefore, based the obtained permittivity value, pineapple leaves could be further explored as potential dielectric materials.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ameen, M., Zamri, N. M., May, S. T., Azizan, M. T., Aqsha, A., Sabzoi, N., & Sher, F. (2021). Effect of acid catalysts on hydrothermal carbonization of Malaysian oil palm residues (leaves, fronds, and shells) for hydrochar production. Biomass Conversion and Biorefinery, 12, 103-114. https://doi.org/10.1007/s13399-020-01201-2
Baharudin, E., Ismail, A., Alhawari, A. R. H., Zainudin, E. S., Majid, D. L. A., & Seman, F. C. (2014). Investigation on the dielectric properties of pulverized oil palm frond and pineapple leaf fiber for X-Band microwave absorber application. Advanced Materials Research, 893, 488-491. https://doi.org/10.4028/www.scientific.net/amr.893.488
Cheng, H., Zhan, H., Fu, S., & Lucia, L. A. (2010). Alkali extraction of hemicellulose from depithed corn stover and effects on soda-AQ pulping. BioResources, 11, 196-206. https://doi.org/10.15376/biores.6.1.196-206
Dagade, M. P., & Shaikh, S. M. (2015). Fabrication of composite materials by using short pineapple leaf fiber PALF: A Review. International Journal of Innovations in Engineering Research and Technology, 2015, 1-9.
Das, A. M., Hazarika., M. P., Goswami, M., Yadav, A., & Khound, P. (2016). Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: biofuel by using Myrothecium gramineum. Carbohydrate Polymers, 141, 20-27.
Elloumi, I., Koubaa, A., Kharrat, W., Bradai, C., and Elloumi, A. (2021). Dielectric properties of wood-polymer composites: Effects of frequency, fiber nature, proportion, and chemical composition. Journal of Composite Science, 5(6), Article 141. https://doi.org/10.3390/jcs5060141
Erdal, N.B., & Hakkarainen, M. (2022). Degradation of cellulose derivatives in laboratory, man-made, and natural environments. Biomacromolecules, 23(7), 2713-2729.
Farea, A. M. M., Kumar, S., Batoo, K. M., Yousef, A., Lee, C. G., & Alimuddin. (2008). Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites. Journal of Alloys and Compounds, 464(1-2), 361-369.
Fendi, & Maddu, A. (2018). Dielectric properties of carbon from cassava starch synthesized from hydrothermal process. Journal of Physics: Conference Series, 1028, Article 012018. https://doi.org/10.1088/1742-6596/1028/1/012018
Girijappa, Y. G. T., Rangappa, S. M., Parameswaranpillai. J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Frontiers in Materials, 6, Article 226. https://doi.org/10.3389/fmats.2019.00226
Hamzaoui, A. H., Jamoussi, B., & M’nif, A. (2008). Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy, 90, 1-7. https://doi.org/10.1016/j.hydromet.2007.09.005
Hu, Y., Hamed, O., Salghi, R., Abidi, N., Jodeh, S., & Hattb, R. (2017). Extraction and characterization of cellulose from agricultural waste argan press cake. Cellulose Chemistry and Technology, 51(3-4), 263-272.
Inegbenebor, A. O., & Adeniji, F. A. (2017). Electrical insulative properties of some agro-waste materials. West Indian Journal of Engineering, 30(1), 17-26.
Jayamani, E., Soon, K. H., & Bakri, M. K. B. (2017). Dielectric properties of pineapple leaf fiber reinforced epoxy based composites. Key Engineering Materials, 730, 42-47.
Jiménez, L., Ramos, E., Rodrı́guez, A., De la Torre, M. J., & Ferrer, J. L. (2005). Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp. Bioresource Technology, 96(9), 977-983. https://doi.org/10.1016/j.biortech.2004.09.016
Karazhiyan, H., Razavi, S. M. A., & Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloilds, 25(5), 915-920. https://doi.org/10.1016/j.foodhyd.2010.08.022
Karim, M. S. A., Zainol, N., As'ari, N. I. A. A. B., Hussain, N. S. M., & Aziz, N. H. (2022). Application of soda pulping method in cellulose extraction process from pineapple leaf. Materials Today: Proceedings, 57(3), 1208-1214. https://doi.org/10.1016/j.matpr.2021.11.022
Karim, M. S. A., Zainol, N., Aziz, N. H., Hussain, N. S. M., & Yusof, N.A.T. (2023). Dielectric material preparation from pineapple leaf fiber based on two-level factorial analysis and its morphological structure. Journal of Engineering Research, 12(2), 25-33. https://doi.org/10.1016/j.jer.2023.11.022
Karim, M. S. B. A., Konishi, Y., Harafuji, K., & Kitazawa, T. (2014). Determination of complex permittivities of layered materials using waveguide measurements. IEEE Transactions on Microwave Theory Techniques, 62(9), 2140-2148.
Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W. and Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13, 2442-2458. https://doi.org/10.1016/j.jmrt.2021.06.014
Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90(3), 385-391.
Khazraji, A. C., & Robert, S. (2013). Interaction effects between cellulose and water in nanocrystalline and amorphous regions: A novel approach using molecular modeling. Journal of Nanomaterials, 2013, Article 44. https://doi.org/10.1155/2013/409676
Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, Article 112285. https://doi.org/10.1016/j.envres.2021.112285
Kulic, G., & Radojicic, V. (2011). Analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Science Belgrade, 56(3), 207-215. https://doi.org/10.2298/JAS1103207K
Lawal, S. A., & Ugheoke, B. I. (2010). Investigation of alpha-cellulose content of agro-wastes products as alternatives for paper production. AU Journal of Technology, 13(4), 258-260.
Lim, W. L., Gunny, A. A. N., Kasim, F. H., AlNashef, I. M., & Arbain, D. (2019). Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping. Cellulose, 26, 4085-4098. https://doi.org/10.1007/s10570-019-02346-8
Masoumi, H. R. F., Kassim, A., Basri, M., & Abdullah, D. K. (2011). Determining optimum conditions for lipase-catalyzed synthesis of triethanolamine (TEA)-based esterquat cationic surfactant by a Taguchi robust design method. Molecules, 16, 4672-4680. https://doi.org/10.3390/molecules16064672
Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., & Hinrichsen, G. (2004). A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering, 289(11), 955-974, https://doi:10.1002/mame.200400132
Moshi, A. A. M., Ravindran, D., Bharathi, S. R. S., Suganthan, V., & Singh, G. K. S. (2019). Characterization of new natural cellulosic fibers–a comprehensive review. IOP Conference Series: Materials Science and Engineering, 574, Article 012013. https://doi.org/10.1088/1757-899X/574/1/012013
Nie, S., Huang, J., Hu, J., Zhang, Y., Wang, S., Li, C., & Xie, M. (2013). Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems. Food Science and Human Wellness, 2(2), 87-92.
Nizamuddin, S., Mubarak, N. M., Tiripathi, M., Jayakumar, N. S., Sahu, J. N., & Ganesan, P. (2016). Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel, 163, 88-97.
Osman, R., Abdullah, N. H., Husain, A., Hamidon, M. N., Hasan, I. H., & Matori, K. A. (2017). Dielectric properties of ceramic materials obtained from rice husk for electronic applications. 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM) (pp. 224-226). IEEE. https://doi.org/10.1109/RSM.2017.8069151
Rabiu, Z., Maigari, F. U., Lawan, U., & Mukhtar, Z. G. (2018). Pineapple waste utilization as a sustainable means of waste management. In Z. Zakaria (ed.). Sustainable technologies for the management of agricultural wastes. Applied environmental science and engineering for a sustainable future (pp. 143-154). Springer. https://doi.org/10.1007/978-981-10-5062-6_11
Rasid, N. F. N., Zainol, N., Ya’acob, A., Samad, K. A., Yusof, N. A. T., Aziz, N. H., & Karim, M. S. A. (2023). Factorial analysis on the preparation of pineapple plantation waste as dielectric materials. Biomass Conversion and Biorefinery, 14, 19637-19648. https://doi.org/10.1007/s13399-023-04386-4
Satrovic, E., Cetindas, A., Akben, I., & Damrah, S. (2024). Do natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Research, 127, 116-130. https://doi.org/10.1016/j.gr.2023.04.008
Shah, Z., & Tahir, Q. (2011). Dielectric properties of vegetable oils. Journal of Scientific Research, 3(3), 481-492. https://doi.org/10.3329/jsr.v3i3.7049
Sharma, J., & Chand, N. (2013). Dynamic mechanical analysis and dielectric studies of agro-waste rice husk/polypropylene composites with cenosphere. Journal of Composite Materials, 47(15), 1833-1842. https://doi.org/10.1177/0021998312451610
Shin, E., Yoo, J., Yoo, G., Kim, Y.-J., & Kim, Y. S. (2018). Eco-friendly cross-linked polymeric dielectric material based on natural tannic acid. Chemical Engineering Journal, 358, 170-175, https://doi.org/10.1016/j.cej.2018.09.176
Song, W., Deng, Y., & Zhu, H. (2016). Research on wheat straw pulping with ionic liquid 1-ethyl-3-methylimidazole bromide. Kemija u Industriji, 65(11-12), 579-585. https://doi.org/10.15255/KUI.2016.032
Sridach, W. (2010). Pulping and paper properties of palmyra palm fruit fibers. Songklanakarin Journal of Science and Technology, 32, 201-205.
Yamashiki, T., Kamide, K., Okajima, K., Kowsaka, K., Matsui, T., & Fukase, H. (1988). Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l−1) which possess maximum solubility power against cellulose. Polymer Journal, 20, 447-457. https://doi.org/10.1295/polymj.20.447
Zazoum, B. (2019). Optimization of dielectric strength of polymer/TiO2 nanocomposites for high voltage insulation. Materials Research Express, 6(11), Article 1150g8. https://doi.org/10.1088/2053-1591/ab519d
Zhang, S., Li, F. X., Yu, J. Y., & Hsieh, Y. L. (2010). Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydrate Polymers, 81, 668-674. https://doi.org/10.1016/j.carbpol.2010.03.029
Zulkifli, N. A., Wee, F. H., Mahrom, N., Yew, B. S., Lee, Y. S., Ibrahim, S. Z., & Phan, A. L. A. (2017). Analysis of dielectric properties on agricultural waste for microwave communication application. MATEC Web Conferences, 140, Article 01013. https://doi:10.1051/matecconf/201714001013