Tungsten-Doped Borosilicate Glasses for Radiation Shielding
Main Article Content
Abstract
In this study, a series of glasses in the 25 Na2O- 15 B2O3- (60-x)SiO2- xWO3 system (with x up to 2 mol%) was developed by a melt-quench route. To evaluate their potential applications as novel lead-free transparent shielding materials in nuclear medicine, the impact of tungsten trioxide (WO3) addition on glass formation, structure, properties, and radiation shielding effectiveness of the produced glasses was also investigated. The glass forming ability was found to be restricted, and high-transparency homogeneous bulk glasses containing WO3 up to 1.5 mol% could only be achieved, as verified by XRD measurements. FTIR spectroscopy revealed the network modifications caused by the incorporation of various WO3 concentrations into the glass system. This was further supported by thermal and mechanical investigation, which demonstrated that increasing WO3 content increased both glass transition temperature (Tg) and Vickers hardness (Hv) values. The increases in Tg and Hv could be attributed to tungsten's participation in the formation of new strong W-O connections. Furthermore, the radiation shielding performance of the glasses, such as the half-value layer (HVL), the mean free path (MFP) and the lead equivalent thickness (LEV), as determined by means of a NaI(Tl) scintillation detector in a narrow beam geometry setup using 137Cs, 133Ba and 57Co as the radiation sources, were compared to that of commercial lead glass and found to be improved with higher WO3 content. The findings provide sufficient data to indicate that our tungsten-doped borosilicate glasses, especially the sample containing 1.5 mol% WO3, could be potential candidates for alternative lead-free, high-transparency radiation shielding materials in nuclear medicine applications.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Affatigato, M. (2015). Modern glass characterization. John Wiley & Sons.
Al-Buriahi, M. S., Taha, T. A., Alothman, M. A., Donya, H., & Olarinoye, I. O. (2021). Influence of WO3 incorporation on synthesis, optical, elastic and radiation shielding properties of borosilicate glass system. The European Physical Journal Plus, 136(7), Article 779. https://doi.org/10.1140/epjp/s13360-021-01790-5
Al-Hadeethi, Y., & Tijani, S. A. (2019). The use of lead-free transparent 50BaO-(50-x) borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. Journal of Alloys and Compounds, 803, 625-630.
Ataalla, M., Afify, A. S., Hassan, M., Abdallah, M., Milanova, M., Aboul-Enein, H. Y., & Mohamed, A. (2018). Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review. Journal of Non-Crystalline Solids, 491, 43-54. https://doi.org/10.1016/j.jnoncrysol.2018.03.050
Bootjomchai, C., Laopaiboon, J., Yenchai, C., & Laopaiboon, R. (2012). Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiation Physics and Chemistry, 81(7), 785-790.
Chanthima, N., & Kaewkhao, J. (2013). Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Annals of Nuclear Energy, 55, 23-28.
Cheewasukhanont, W., Limkitjaroenporn, P., Kothan, S., Kedkaew, C., & Kaewkhao, J. (2020). The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiation Physics and Chemistry, 172, Article 108791. https://doi.org/10.1016/j.radphyschem.2020.108791
Cherkasov, V., Avdonin, V., Yurkin, Y., & Suntsov, D. (2019). Prediction of radiation shielding properties of self-adhesive elastic coating. Materials Physics and Mechanics, 42(6), 825-836.
Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). Advanced inorganic chemistry. John Wiley & Sons.
Dantas, N. O., Ayta, W. E., Silva, A. C., Cano, N. F., Silva, S. W., & Morais, P. C. (2011). Effect of Fe2O3 concentration on the structure of the SiO2–Na2O–Al2O3–B2O3 glass system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 140-143.
De Darwent, B. B. (1970). Bond dissociation energies in simple molecules. NSRDS-NBS 31. U.S. Government Printing Office.
Ehab, M., Salama, E., Ashour, A., Attallah, M., & Saleh, H. M. (2022). Optical properties and gamma radiation shielding capability of transparent barium borosilicate glass composite. Sustainability, 14(20), Article 13298. https://doi.org/10.3390/su142013298
Esawii, H. A., Salama, E., El-ahll, L. S., Moustafa, M., & Saleh, H. M. (2022). High impact tungsten-doped borosilicate glass composite for gamma and neutron transparent radiation shielding. Progress in Nuclear Energy, 150, Article 104321. https://doi.org/10.1016/j.pnucene.2022.104321
Fares, H., Jlassi, I., Elhouichet, H., & Férid, M. (2014). Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 396-397, 1-7. https://doi.org/10.1016/j.jnoncrysol.2014.04.012
Gaafar, M. S., & Marzouk, S. Y. (2007). Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy. Physica B: Condensed Matter, 388(1-2), 294-302.
Gavrish, V. M., Baranov, G. A., Chayka, T. V., Derbasova, N. M., Lvov, A. V., & Matsuk, Y. M. (2016). Tungsten nanoparticles influence on radiation protection properties of polymers. IOP Conference Series: Materials Science and Engineering, 110, Article 012028. https://doi.org/10.1088/1757-899X/110/1/012028
Groth, M. J. (1996). Empirical dose rate and attenuation data for radionuclides in nuclear medicine. Australasian Physical & Engineering Sciences in Medicine, 19(3), 160-167.
Helene, O. A., Vanin, V. R., Helmer, R. G., Schönfeld, E., Dersch, R., Baglin, C. M., & Pascholati, P. R. (2007). Update of x-ray and gamma-ray decay data standards for detector calibration and other applications. International Atomic Energy Agency.
Hindorf, C., & Jönsson, L. (2016). Radiation protection in nuclear medicine. In R. J. Vetter & M. S. Stoeva (Eds.). Radiation Protection in Medical Imaging and Radiation Oncology (pp. 111-135). CRC Press.
Hulbert, S. M., & Carlson, K. A. (2009). Is lead dust within nuclear medicine departments a hazard to pediatric patients? Journal of Nuclear Medicine Technology, 37(3), 170-172.
Intachai, N., Wantana, N., Kaewjaeng, S., Chaiphaksa, W., Cheewasukhanont, W., Htun, K. T., Kothan, S., Kim, H. J., & Kaewkhao, J. (2022). Effect of Gd2O3 on radiation shielding, physical and optical properties of sodium borosilicate glass system. Radiation Physics and Chemistry, 199, Article 110361. https://doi.org/10.1016/j.radphyschem.2022.110361
Kaewkhao, J., & Limsuwan, P. (2010). Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 619(1-3), 295-297.
Kaur, P., Singh, D., & Singh, T. (2016). Heavy metal oxide glasses as gamma rays shielding material. Nuclear Engineering and Design, 307, 364-376.
Ketelhut, S., Büermann, L., & Hilgers, G. (2021). Catalog of x-ray spectra of Mo-, Rh-, and W-anode-based x-ray tubes from 10 to 50 kV. Physics in Medicine and Biology, 66(11), Article 115013. https://doi.org/10.1088/1361-6560/abfbb2
Khan, F. M. (2010). The physics of radiation therapy. 4th ed. Lippincott Williams & Wilkins.
Kirdsiri, K., Kaewkhao, J., Chanthima, N., & Limsuwan, P. (2011). Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties. Annals of Nuclear energy, 38(6), 1438-1441.
Lai, W. H., Su, Y. H., Teoh, L. G., Tsai, Y. T., & Hon, M. H. (2007). Synthesis of tungsten oxide particles by chemical deposition method. Materials Transactions, 48(6), 1575-1577.
Laopaiboon, R., & Bootjomchai, C. (2015). Characterization of elastic and structural properties of alkali-borosilicate glasses doped with vanadium oxide using ultrasonic technique. Glass Physics and Chemistry, 41, 352-358.
Machida, S., Murayama, N., Maeda, K., Katsumata, K. I., & Yasumori, A. (2022). Microstructural control of CaO–Al2O3–SiO2 glass-ceramics by the amounts of tungsten oxide and carbon added as nucleation agent sources. Journal of the Ceramic Society of Japan, 130(10), 850-856.
Maeda, K., & Yasumori, A. (2015). Effect of molybdenum and tungsten oxides on nucleation and crystallization behaviors of MgO–Al2O3–SiO2 glasses. Journal of Non-Crystalline Solids, 427, 152-159.
Mahmoud, I. S., Issa, S. A. M., Zakaly, H. M. H., Saudi, H. A., Ali, A. S., Saddeek, Y. B., Alharbi, T., & Tekin, H. O. (2021). Material characterization of WO3/Bi2O3 substituted calcium-borosilicate glasses: Structural, physical, mechanical properties and gamma-ray resistance competencies. Journal of Alloys and Compounds, 888, Article 161419. https://doi.org/10.1016/j.jallcom.2021.161419
Marzouk, M. A., Elbatal, F. H., Eisa, W. H., & Ghoneim, N. A. (2014). Comparative spectral and shielding studies of binary borate glasses with the heavy metal oxides SrO, CdO, BaO, PbO or Bi2O3 before and after gamma irradiation. Journal of non-crystalline solids, 387, 155-160. https://doi.org/10.1016/j.jnoncrysol.2014.01.002
Marzouk, S. Y., Seoudi, R., Said, D. A., & Mabrouk, M. S. (2013). Linear and non-linear optics and FTIR characteristics of borosilicate glasses doped with gadolinium ions. Optical Materials, 35(12), 2077-2084.
Mattsson, S., & Hoeschen, C. (2012). Radiation protection in nuclear medicine. Springer.
Meyer, P. A., Brown, M. J., & Falk, H. (2008). Global approach to reducing lead exposure and poisoning. Mutation Research/Reviews in Mutation Research, 659(1-2), 166-175.
Mhareb, M. H. A., Alajerami, Y. S. M., Sayyed, M. I., Dwaikat, N., Alqahtani, M., Alshahri, F., Saleh, N., Alonizan, N., Ghrib, T., & Al-Dhafar, S. I. (2020). Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. Journal of Non-Crystalline Solids, 550, Article 120360. https://doi.org/10.1016/j.jnoncrysol.2020.120360
Peng, S., Ke, Z., Cao, X., Shan, C., Zhao, F., Guan, M., Shi, L., Sun, Y., Yang, Y., & Ma, L. (2020). A novel type of borosilicate glass with excellent chemical stability and high ultraviolet transmission. Journal of Non-Crystalline Solids, 528, Article 119735. https://doi.org/10.1016/j.jnoncrysol.2019.119735
Rao, K. J., 2002. Structural chemistry of glasses. Elsevier.
Ruamnikhom, R., Rajaramakrishna, R., Chaiphaksa, W., Cheewasukhanont, W., Intachai, N., Kothan, S., & Kaewkhao, J. (2023). Hazardous radiation protective glasses for medical and research laboratories. Heliyon, 9(9), Article e19935. https://doi.org/10.1016/j.heliyon.2023.e19935
Salama, E., Soliman, H. A., Youssef, G. M., & Hamad, S. (2017). Thermoluminescence properties of borosilicate glass doped with ZnO. Journal of Luminescence, 186, 164-169.
Saldana-Gonzalez, G., Reyes, U., Salazar, H., Martínez, O., Moreno, E., & Conde, R. (2012). High density devices applied to a gamma-camera implementation. In D. Ventzas (Ed.). Advanced image acquisition, processing techniques and applications (pp. 17-36). InTech.
Sawangboon, N., Nizamutdinova, A., Uesbeck, T., Limbach, R., Meechoowas, E., Tapasa, K., & Brauer, D. S. (2020). Modification of silicophosphate glass composition, structure, and properties via crucible material and melting conditions. International Journal of Applied Glass Science, 11(1), 46-57.
Sayyed, M. I. (2024). Effect of WO3 on the attenuation parameters of TeO2–La2O3-WO3 glasses for radiation shielding application. Radiation Physics and Chemistry, 215, Article 111319. https://doi.org/10.1016/j.radphyschem.2023.111319
Sayyed, M. I., Kumar, A., Tekin, H. O., Kaur, R., Singh, M., Agar, O., & Khandaker, M. U. (2020). Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems. Progress in Nuclear Energy, 118, Article 103118. https://doi.org/10.1016/j.pnucene.2019.103118
Shaaban, K. S., Alotaibi, B. M., Alharbiy, N., & El-Rehim, A. F. A. (2022). Fabrication of lithium borosilicate glasses containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and highly efficient shield. Applied Physics A, 128(4), Article 333. https://doi.org/10.1007/s00339-022-05474-4
Shelby, J. E. (2020). Introduction to glass science and technology (3rd ed.). Royal Society of Chemistry.
Singh, V. P., Badiger, N. M., & Kaewkhao, J. (2014). Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study. Journal of non-crystalline solids, 404, 167-173. https://doi.org/10.1016/j.jnoncrysol.2014.08.003
Singh, K., Singh, H., Sharma, G., Gerward, L., Khanna, A., Kumar, R., Nathuram, R., & Singh, H. S. (2005). Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiation Physics and Chemistry, 72(2-3), 225-228.
Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., Bhatti, S. S., & Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1),1-6. https://doi.org/10.1016/S0168-583X(02)00498-6
Shultis, J. K., & Faw, R. E. (2010). Radiation shielding and radiological protection. In D. G. Cacuci (Ed.). Handbook of nuclear engineering (pp. 1313-1448). Springer. https://doi.org/10.1007/978-0-387-98149-9_11
Tsoulfanidis, N. (1995). Measurement and detection of radiation (2nd ed.). Taylor & Francis.
Uosif, M. A. M., Mostafa, A. M. A., Issa, S. A., Tekin, H. O., Alrowaili, Z. A., & Kilicoglu, O. (2020). Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: An experimental study. Journal of Non-Crystalline Solids, 532, Article 119882. https://doi.org/10.1016/j.jnoncrysol.2019.119882
Zanzonico, P. (2011). Nuclear medicine physics. Medical Physics, 38(8), 4904-4904.