Immature Platelet Fraction to Unveil the Contribution of HMG-CoA: Mechanistic Insights into Clinical Benefits
Main Article Content
Abstract
The immature platelet fraction (IPF) has emerged as a critical marker in providing valuable insights into platelet production and turnover dynamics. HMG-CoA, an essential enzyme in cholesterol biosynthesis, plays a significant role in regulating platelet maturation and function. Changes in cholesterol metabolism can potentially lead to abnormalities in platelet activation, aggregation, and thrombotic processes. This underscores the broader implications of metabolic disorders, such as hypercholesterolemia, in cardiovascular diseases where platelet dysfunction is a critical factor. Understanding the mechanistic links between HMG-CoA and platelet biology offers insights into therapeutic strategies aimed at mitigating cardiovascular risks associated with dyslipidemia and related conditions. Moreover, recent advances in nanotechnology have shown promising strides in the prevention, diagnosis, and treatment of hyperlipidemia and cardiovascular diseases. Integration of nanotechnological approaches with the understanding of HMG-CoA and IPF dynamics could potentially revolutionize personalized medicine strategies, offering novel avenues for improving patient outcomes and managing cardiovascular health effectively.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Acil, T., Atalar, E., Sahiner, L., Kaya, B., Haznedaroglu, I. C., Tokgozoglu, L., Ovunc, K., Aytemir, K., Ozer, N., Oto, A., Ozmen, F., Nazli, N., Kes, S., & Aksoyek, S. (2007). Effects of acute exercise on fibrinolysis and coagulation in patients with coronary artery disease. International Heart Journal, 48(3), 277-285. https://doi.org/10.1536/ihj.48.277
Alconcel, S. N. S., Baas, A. S., & Maynard, H. D. (2011). FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polymer Chemistry, 2, 1442-1448. https://doi.org/10.1039/C1PY00034A
Asberg, A., Hartmann, A., Fjeldså, E., & Holdaas, H. (2001). Atorvastatin improves endothelial function in renal-transplant recipients. Nephrology, Dialysis, Transplantation, 16(9), 1920-1924. https://doi.org/10.1093/ndt/16.9.1920
Asher, J., & Houston, M. (2007). Statins and C‐reactive protein levels. The Journal of Clinical Hypertension, 9(8), 622-628.
Aviram, M., Rosenblat, M., Bisgaier, C. L., & Newton, R. S. (1998). Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis, 138(2), 271-280. https://doi.org/10.1016/s0021-9150(98)00032-x
Bakker-Arkema, R. G., Davidson, M. H., Goldstein, R. J., Davignon, J., Isaacsohn, J. L., Weiss, S. R., Keilson, L. M., Brown, W. V, Miller, V. T., Shurzinske, L. J., & Black, D. M. (1996). Efficacy and safety of a new HMG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA, 275(2), 128-133.
Ballantyne, C. M., Abate, N., Yuan, Z., King, T. R., & Palmisano, J. (2005). Dose-comparison study of the combination of ezetimibe and simvastatin (Vytorin) versus atorvastatin in patients with hypercholesterolemia: the Vytorin Versus Atorvastatin (VYVA) study. American Heart Journal, 149(3), 464-473. https://doi.org/10.1016/j.ahj.2004.11.023
Bardolia, C., Amin, N. S., & Turgeon, J. (2021). Emerging non-statin treatment options for lowering low-density lipoprotein cholesterol. Frontiers in Cardiovascular Medicine, 8, Article 789931. https://doi.org/10.3389/fcvm.2021.789931
Bernlochner, I., Goedel, A., Plischke, C., Schüpke, S., Haller, B., Schulz, C., Mayer, K., Morath, T., Braun, S., Schunkert, H., Siess, W., Kastrati, A., & Laugwitz, K.-L. (2015). Impact of immature platelets on platelet response to ticagrelor and prasugrel in patients with acute coronary syndrome. European Heart Journal, 36(45), 3202-3210. https://doi.org/10.1093/eurheartj/ehv326
Boyd, R. A., Stern, R. H., Stewart, B. H., Wu, X., Reyner, E. L., Zegarac, E. A., Randinitis, E. J., & Whitfield, L. (2000). Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. Journal of Clinical Pharmacology, 40(1), 91-98. https://doi.org/10.1177/00912700022008612
Byrne, P., Cullinan, J., Smith, A., & Smith, S. M. (2019). Statins for the primary prevention of cardiovascular disease: An overview of systematic reviews. BMJ Open, 9(4), Article e023085. https://doi.org/10.1136/bmjopen-2018-023085
Catapano, A. L., Graham, I., De Backer, G., Wiklund, O., Chapman, M. J., Drexel, H., Hoes, A. W., Jennings, C. S., Landmesser, U., Pedersen, T. R., Reiner, Ž., Riccardi, G., Taskinen, M.-R., Tokgozoglu, L., Verschuren, W. M. M., Vlachopoulos, C., Wood, D. A., Zamorano, J. L., & Cooney, M.-T. (2016). 2016 ESC/EAS guidelines for the management of dyslipidaemias. European Heart Journal, 37(39), 2999-3058. https://doi.org/10.1093/eurheartj/ehw272
Chandarana, M., Curtis, A., & Hoskins, C. (2018). The use of nanotechnology in cardiovascular disease. Applied Nanoscience, 8(7), 1607-1619. https://doi.org/10.1007/s13204-018-0856-z
Cheraghi, M., Negahdari, B., Daraee, H., & Eatemadi, A. (2017). Heart targeted nanoliposomal/nanoparticles drug delivery: An updated review. Biomedicine & Pharmacotherapy, 86, 316-323. https://doi.org/10.1016/j.biopha.2016.12.009
Clarke, T. A., & Waskell, L. A. (2003). The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 31(1), 53-59. https://doi.org/10.1124/dmd.31.1.53
El-Tantawy, W. H., & Temraz, A. (2019). Natural products for controlling hyperlipidemia: review. Archives of Physiology and Biochemistry, 125(2), 128-135. https://doi.org/10.1080/13813455.2018.1441315
Grove, E. L., Hvas, A.-M., & Kristensen, S. D. (2009). Immature platelets in patients with acute coronary syndromes. Thrombosis and Haemostasis, 101(1), 151-156.
Grundy, S. M. (1998). Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. The American Journal of Cardiology, 81(4A), 18B-25B. https://doi.org/10.1016/s0002-9149(98)00033-2
Gupta, N., Sharma, N., Mathur, S. K., Chandra, R., & Nimesh, S. (2018). Advancement in nanotechnology-based approaches for the treatment and diagnosis of hypercholesterolemia. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 188-197. https://doi.org/10.1080/21691401.2017.1417863
Guthikonda, S., Alviar, C. L., Vaduganathan, M., Arikan, M., Tellez, A., DeLao, T., Granada, J. F., Dong, J. F., Kleiman, N. S., & Lev, E. I. (2008). Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. Journal of the American College of Cardiology, 52(9), 743-749. https://doi.org/10.1016/j.jacc.2008.05.031
Hamad, M. A., Schanze, N., Schommer, N., Nührenberg, T., & Duerschmied, D. (2021). Reticulated platelets—which functions have been established by in vivo and in vitro data? Cells, 10(5), Article 1172. https://doi.org/10.3390/cells10051172
Igel, M., Sudhop, T., & von Bergmann, K. (2002). Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. Journal of Clinical Pharmacology, 42(8), 835-845. https://doi.org/10.1177/009127002401102731
Jiménez, M. M., Guedán, M. J. A., Martín, L. M., Campos, J. A. S., Martínez, I. R., & Vilella, C. T. (2006). Measurement of reticulated platelets by simple flow cytometry: An indirect thrombocytopoietic marker. European Journal of Internal Medicine, 17(8), 541-544. https://doi.org/10.1016/j.ejim.2006.03.006
Karam, M., Fahs, D., Maatouk, B., Safi, B., Jaffa, A. A., & Mhanna, R. (2022). Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Materials Today Bio, 14, Article 100249. https://doi.org/10.1016/j.mtbio.2022.100249
Lee, H.-C., Akhmedov, A., & Chen, C.-H. (2022). Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Frontiers in Cardiovascular Medicine, 9, Article 993633. https://doi.org/10.3389/fcvm.2022.993633
Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149-173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
Marais, A. D., Naoumova, R. P., Firth, J. C., Penny, C., Neuwirth, C. K., & Thompson, G. R. (1997). Decreased production of low density lipoprotein by atorvastatin after apheresis in homozygous familial hypercholesterolemia. Journal of Lipid Research, 38(10), 2071-2078.
Matoba, T., & Egashira, K. (2014). Nanoparticle-mediated drug delivery system for cardiovascular disease. International Heart Journal, 55(4), 281-286. https://doi.org/10.1536/ihj.14-150
Mobed, M., & Chang, T. M. (1998). Comparison of polymerically stabilized PEG-grafted liposomes and physically adsorbed carboxymethylchitin and carboxymethyl/ glycolchitin liposomes for biological applications. Biomaterials, 19(13), 1167-1177. https://doi.org/10.1016/s0142-9612(98)00004-0
Ness, G. C., Chambers, C. M., & Lopez, D. (1998). Atorvastatin action involves diminished recovery of hepatic HMG-CoA reductase activity. Journal of Lipid Research, 39(1), 75-84.
Nixon, D. E., Bosch, R. J., Chan, E. S., Funderburg, N. T., Hodder, S., Lake, J. E., Lederman, M. M., Klingman, K. L., Aberg, J. A., & AIDS Clinical Trials Group Study A5275. (2017). Effects of atorvastatin on biomarkers of immune activation, inflammation, and lipids in virologically suppressed, human immunodeficiency virus-1-infected individuals with low-density lipoprotein cholesterol <130 mg/dL. Journal of Clinical Lipidology, 11(1), 61-69. https://doi.org/10.1016/j.jacl.2016.09.017
Onono, F. O., Morgan, M. A., Spielmann, H. P., Andres, D. A., Subramanian, T., Ganser, A., & Reuter, C. W. M. (2010). A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with western blotting. Molecular and Cellular Proteomics, 9(4), 742-751. https://doi.org/10.1074/mcp.M900597-MCP200
Paul, A., Hasan, A., Kindi, H. A., Gaharwar, A. K., Rao, V. T. S., Nikkhah, M., Shin, S. R., Krafft, D., Dokmeci, M. R., Shum-Tim, D., & Khademhosseini, A. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano, 8(8), 8050-8062. https://doi.org/10.1021/nn5020787
Pirillo, A., Casula, M., Olmastroni, E., Norata, G. D., & Catapano, A. L. (2021). Global epidemiology of dyslipidaemias. Nature Reviews. Cardiology, 18(10), 689-700. https://doi.org/10.1038/s41569-021-00541-4
Raizada, A., Bandari, A., & Kumar, B. (2010). Polymers in drug delivery: A review. International Journal of Pharma Research and Development – Online, 2(8), 9-20.
Saludas, L., Pascual-Gil, S., Prósper, F., Garbayo, E., & Blanco-Prieto, M. (2017). Hydrogel based approaches for cardiac tissue engineering. International Journal of Pharmaceutics, 523(2), 454-475. https://doi.org/10.1016/j.ijpharm.2016.10.061
Sethi, Y., Patel, N., Kaka, N., Kaiwan, O., Kar, J., Moinuddin, A., Goel, A., Chopra, H., & Cavalu, S. (2023). Precision medicine and the future of cardiovascular diseases: A clinically oriented comprehensive review. Journal of Clinical Medicine, 12(5), Article 1799. https://doi.org/10.3390/jcm12051799
Shah, A., Gandhi, D., Srivastava, S., Shah, K. J., & Mansukhani, R. (2017). Heart failure: A class review of pharmacotherapy. P and T, 42(7), 464-472.
Singh, B., Garg, T., Goyal, A. K., & Rath, G. (2016). Recent advancements in the cardiovascular drug carriers. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 216-225. https://doi.org/10.3109/21691401.2014.937868
Singh, O., Garg, T., Rath, G., & Goyal, A. K. (2014). Microbicides for the treatment of sexually transmitted HIV infections. Journal of Pharmaceutics, 2014, Article 352425. https://doi.org/10.1155/2014/352425
Tarun, G., & Amit, K. G. (2014). Liposomes: Targeted and controlled delivery system. Drug Delivery Letters, 4(1), 62-71. https://doi.org/10.2174/22103031113036660015
Thompson, G. R. (2008). Recommendations for the use of LDL apheresis. Atherosclerosis, 198(2), 247-255. https://doi.org/10.1016/j.atherosclerosis.2008.02.009
Vaughan, C. J., Gotto, A. M. Jr., & Basson, C. T. (2000). The evolving role of statins in the management of atherosclerosis. Journal of the American College of Cardiology, 35(1), 1-10. https://doi.org/10.1016/s0735-1097(99)00525-2
Wang, D. K., Rahimi, M., & Filgueira, C. S. (2021). Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine: Nanotechnology, Biology, and Medicine, 34, Article 102387. https://doi.org/10.1016/j.nano.2021.102387
Wei, Y., Yan, L., Luo, L., Gui, T., Jang, B., Amirshaghaghi, A., You, T., Tsourkas, A., Qin, L., & Cheng, Z. (2021). Phospholipase A2 inhibitor-loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression. Science Advances, 7(15), Article eabe6374. https://doi.org/10.1126/sciadv.abe6374
Whitehead, K. A., Dorkin, J. R., Vegas, A. J., Chang, P. H., Veiseh, O., Matthews, J., Fenton, O. S., Zhang, Y., Olejnik, K. T., Yesilyurt, V., Chen, D., Barros, S., Klebanov, B., Novobratsev, T., Langer, R., & Anderson, D. G. (2014). Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nature Communications, 5, Article 4277. https://doi.org/10.1038/ncomms5277
Xiao, C., Dash, S., Morgantini, C., Hegele, R. A., & Lewis, G. F. (2016). Pharmacological targeting of the atherogenic dyslipidemia complex: The next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes, 65(7), 1767-1778. https://doi.org/10.2337/db16-0046
Zhang, Q., Liu, S., Liu, Y., Hua, Y., Song, H., Ren, Y., Song, Y., Liu, R., Feng, W., Ovbiagele, B., Ding, J., & Ji, X. (2017). Achieving low density lipoprotein-cholesterol<70mg/dL may be associated with a trend of reduced progression of carotid artery atherosclerosis in ischemic stroke patients. Journal of the Neurological Sciences, 378, 26-29. https://doi.org/10.1016/j.jns.2017.04.024
Zivkovic, S., Maric, G., Cvetinovic, N., Lepojevic-stefanovic, D., & Cvijan, B. B. (2023). Anti-inflammatory effects of lipid-lowering drugs and supplements — a narrative review. Nutrients, 15(6), Article 1517. https://doi.org/10.3390/nu15061517
Zodda, D., Giammona, R., & Schifilliti, S. (2018). Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy, 6(1), Article 10. https://doi.org/10.3390/pharmacy6010010