Synthesis and Cytotoxicity Evaluation of Novel C-3 Aminocarbamate Pregnenolone Derivatives
Main Article Content
Abstract
Cancer is one of the leading causes of death worldwide. There are many ongoing studies in the search for new treatments or drugs to combat cancer. Similarly, in this research, twelve 3-aminocarbamate pregnenolones (2a–2l) were designed, synthesized, and evaluated for their cytotoxicity against five cancer cell lines: Human hepatocellular carcinoma (HepG2), Human colon adenocarcinoma (HT-29), Human oral cavity carcinoma (KB), Human breast adenocarcinoma (MCF-7), Murine leukemia (P388), and one normal cell line, African green monkey kidney fibroblast (Vero), using the MTT assay. Notably, 3-aminobenzylcarbamate pregnenolone (2b), 3-diaminoheptylcarbamate pregnenolone (2f), and 3-diaminopropanolcarbamate derivative (2i) were the most potent against these cancer cell lines. Specifically, for P388 cell lines, these compounds were more potent than the positive control drug, vinblastine sulfate salt. Results from the SAR study demonstrated that the length of the alkyl chain of diaminocarbamate derivatives was crucial for their anticancer properties. These findings will be useful in the future research and development of anticancer drugs.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ajduković, J. J., Jakimov, D. S., Rárová, L., Strnad, M., Dzichenka, Y. U., Usanov, S., Škorić, D. Đ., Jovanović-Šanta, S. S., & Sakač, M. N. (2021). Novel alkylaminoethyl derivatives of androstane 3-oximes as anticancer candidates: synthesis and evaluation of cytotoxic effects. RSC Advances, 11, 37449-37461. https://doi.org/10.1039/D1RA07613B
Antinarelli, L. M., Carmo, A. M., Pavan, F. R., Leite, C. Q. F., Da Silva, A. D., Coimbra, E. S., & Salunke, D. B. (2012). Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Organic and Medicinal Chemistry Letters, 2(1), https://doi.org/10.1186/2191-2858-2-16
Arshad, F., Khan, M. F., Akhtar, W., Alam, M. M., Nainwal, L. M., Kaushik, S. K., Akhter, M., Parvez, S., Hasan, S. M., & Shaquiquzzaman, M. (2019). Revealing quinquennial anticancer journey of morpholine: A SAR based review. European Journal of Medicinal Chemistry, 167, 324-356. https://doi.org/10.1016/j.ejmech.2019.02.015
Banday, A. H., Akram, S., & Shameem, S. A. (2014). Benzylidine pregnenolones and their oximes as potential anticancer agents: synthesis and biological evaluation. Steroids, 84, 64-69. https://doi.org/10.1016/j.steroids.2014.03.010
Banday, A. H., Mir, B. P., Lone, I. H., Suri, K., & Kumar, H. S. (2010). Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 75(12), 805-809. https://doi.org/10.1016/j.steroids.2010.02.014
Banday, A. H., Zargar, M. I., & Ganaie, B. A. (2011). Synthesis and antimicrobial studies of chalconyl pregnenolones. Steroids, 76(12), 1358-1362. https://doi.org/10.1016/j.steroids.2011.07.001
Baulieu, E.-E., & Schumacher, M. (2000). Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids, 65(10-11), 605-612. https://doi.org/10.1016/S0039-128X(00)00173-2
Bishop, G. J., & Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. The Plant Cell, 14, S97-S110. https://doi.org/10.1105/tpc.001461
Bohl, M. (2018). Molecular structure and biological activity of steroids. CRC Press.
Bratoeff, E., Sainz, T., Cabeza, M., Heuze, I., Recillas, S., Pérez, V., Rodríguez, C., Segura, T., Gonzáles, J., & Ramírez, E. (2007). Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5α-reductase. The Journal of Steroid Biochemistry and Molecular Biology, 107(1-2), 48-56. https://doi.org/10.1016/j.jsbmb.2007.03.038
Bu, M., Cao, T., Li, H., Guo, M., Yang, B. B., Zeng, C., & Hu, L. (2017). Synthesis of 5α,8α-ergosterol peroxide 3-carbamate derivatives and a fluorescent mitochondria-targeting conjugate for enhanced anticancer activities. ChemMedChem, 12(6), 466-474. https://doi.org/10.1002/cmdc.201700021
Chaturvedi, D. (2013). Role of organic carbamates in anticancer drug design. In G. Brahmachari (Ed.). Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds (pp. 117-140). CRC Press
Choudhary, M. I., Alam, M. S., Atta-ur-Rahman, Yousuf, S., Wu, Y.-C., Lin, A.-S., Shaheen, F. (2011). Pregnenolone derivatives as potential anticancer agents. Steroids, 76(14), 1554-1559. https://doi.org/10.1016/j.steroids.2011.09.006
Ehsan, M., Das, M., Stern, V., Du, Y., Mortensen, J. S., Hariharan, P., Byrne, B., Loland, C. J., Kobilka, B. K.,Guan, L. & Chae, P. S. (2018). Steroid‐based amphiphiles for membrane protein study: The importance of alkyl spacers for protein stability. ChemBioChem, 19(13), 1433-1443. https://doi.org/10.1002/cbic.201800106
Erkılıç, U. (2008). Biotechnological modification of steroidal structures. [Master thesis, Middle East Technical University]. Middle East Technical University Archive. https://etd.lib.metu.edu.tr/upload/3/12609258/index.pdf
Fiorot, R. G., Westphal, R., Lemos, B. C., Romagna, R. A., Gonçalves, P. R., Fernandes, M., Ferreira, C. V., Taranto, A. G., & Greco, S. J. (2019). Synthesis, molecular modelling and anticancer activities of new molecular hybrids containing 1, 4-naphthoquinone, 7-chloroquinoline, 1, 3, 5-triazine and morpholine cores as PI3K and AMPK inhibitors in the metastatic melanoma cells. Journal of the Brazilian Chemical Society, 30(9), 1860-1873. https://doi.org/10.21577/0103-5053.20190096
Fu, B., Li, Y., Peng, S., Wang, X., Hu, J., Lv, L., Xia, C., Lu, D., & Qin, C. (2021). Synthesis and pharmacological characterization of glucopyranosyl-conjugated benzyl derivatives as novel selective cytotoxic agents against colon cancer. Royal Society Open Science, 8(2), Article 201642. https://doi.org/10.1098/rsos.201642
Ghosh, A. K., & Brindisi, M. (2015). Organic carbamates in drug design and medicinal chemistry. Journal of Medicinal Chemistry, 58(7), 2895-2940. https://doi.org/10.1021/jm501371s
Goud, N. S., Pooladanda, V., Mahammad, G. S., Jakkula, P., Gatreddi, S., Qureshi, I. A., Alvala, R., Godugu, C., & Alvala, M. (2019). Synthesis and biological evaluation of morpholines linked coumarin–triazole hybrids as anticancer agents. Chemical Biology & Drug Design, 94(5), 1919-1929. https://doi.org/10.1111/cbdd.13578
Graf, M. R., Jia, W., Lewbart, M. L., & Loria, R. M. (2009). The anti‐tumor effects of androstene steroids exhibit a strict structure–activity relationship dependent upon the orientation of the hydroxyl group on carbon‐17. Chemical Biology & Drug Design, 74(6), 625-629. https://doi.org/10.1111/j.1747-0285.2009.00900.x
Gupta, A., Kumar, B. S., & Negi, A. S. (2013). Current status on development of steroids as anticancer agents. The Journal of Steroid Biochemistry and Molecular Biology, 137, 242-270. https://doi.org/10.1016/j.jsbmb.2013.05.011
Huang, Y., Li, G., Hong, C., Zheng, X., Yu, H., & Zhang, Y. (2021). Potential of steroidal alkaloids in cancer: Perspective insight into structure–activity relationships. Frontiers in Oncology, 11, Article 733369. https://doi.org/10.3389/fonc.2021.733369
Hussein, M. A., Iqbal, M. A., Umar, M. I., Haque, R. A., & Guan, T. S. (2019). Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. Arabian Journal of Chemistry, 12(8), 3183-3192. https://doi.org/10.1016/j.arabjc.2015.08.013
Iqbal, A., & Siddiqui, T. (2021). A review on synthesis and biological activities of D-ring modified pregnenolone. Steroids, 170, Article 108827. https://doi.org/10.1016/j.steroids.2021.108827
Lednicer, D. (2011). Steroid chemistry at a glance. John Wiley & Sons.
Lee, Y. B., Park, M. H., & Folk, J. (1995). Diamine and triamine analogs and derivatives as inhibitors of deoxyhypusine synthase: synthesis and biological activity. Journal of Medicinal Chemistry, 38(16), 3053-3061. https://doi.org/10.1021/jm00016a008
Lenci, E., Calugi, L., & Trabocchi, A. (2021). Occurrence of morpholine in central nervous system drug discovery. ACS Chemical Neuroscience, 12(3), 378-390. https://doi.org/10.1021/acschemneuro.0c00729
Loncle, C., Salmi, C., Letourneux, Y., & Brunel, J. M. (2007). Synthesis of new 7-aminosterol squalamine analogues with high antimicrobial activities through a stereoselective titanium reductive amination reaction. Tetrahedron, 63(52), 12968-12974. https://doi.org/10.1016/j.tet.2007.10.032
Lone, I. H., & Bhat, M. A. (2013). Synthesis, molecular properties and MIC studies of D-ring chalcone derivatives of 20-keto pregnenolone. Materials Science Forum, 760, 15-22. https://doi.org/10.4028/www.scientific.net/MSF.760.15
Madia, V. N., Nicolai, A., Messore, A., De Leo, A., Ialongo, D., Tudino, V., Saccoliti, F., De Vita, D., Scipione, L., Artico, M., Taurone, S., Taglieri, L., Santo, R. D., Scarpa, S. & Costi, R. (2021). Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules, 26(3), Article 771. https://doi.org/10.3390/molecules26030771
Maltais, R., & Poirier, D. (2011). Steroid sulfatase inhibitors: a review covering the promising 2000-2010 decade. Steroids, 76(10-11), 929-948. https://doi.org/10.1016/j.steroids.2011.03.010
Matošević, A., & Bosak, A. (2020). Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Archives of Industrial Hygiene and Toxicology, 71(4), 285-299. https://doi.org/10.2478/aiht-2020-71-3466
Merlani, M. I., Amiranashvili, L. S., Mulkidzhanyan, K. G., & Kemertelidze, E. P. (2006). Synthesis and biological activity of certain amino-derivatives of 5α-steroids. Chemistry of Natural Compounds, 42, 322-324. https://doi.org/10.1007/s10600-006-0110-x
Midzak, A., Rammouz, G., & Papadopoulos, V. (2012). Structure–activity relationship (SAR) analysis of a family of steroids acutely controlling steroidogenesis. Steroids, 77(13), 1327-1334. https://doi.org/10.1016/j.steroids.2012.08.019
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
Pacheco, D. F., Alonso, D., Ceballos, L. G., Castro, A. Z., Roldán, S. B., Díaz, M. G., Testa, A. V., Wagner, S. F., Piloto-Ferrer, J., García, Y. C., Olea, A. F., & Espinoza, L. (2012). Synthesis of four steroidal carbamates with antitumor activity against mouse colon carcinoma CT26WT Cells: In vitro and in silico evidence. International Journal of Molecular Sciences, 23(15), Article 8775. https://doi.org/10.3390/ijms23158775
Pathak, N., Fatima, K., Singh, S., Mishra, D., Gupta, A. C., Kumar, Y., Chanda, D., Bawankule, D. U., Shanker, K., Khan, F., Gupta, A., Luqman, S., & Negi, A. S. (2019). Bivalent furostene carbamates as antiproliferative and antiinflammatory agents. The Journal of Steroid Biochemistry and Molecular Biology, 194, Article 105457. https://doi.org/10.1016/j.jsbmb.2019.105457
Phi, T. D., Pham, V. C., Mai, H. D. T., Litaudon, M., Guéritte, F., Nguyen, V. H., & Chau, V. M. (2011). Cytotoxic steroidal alkaloids from Kibatalia laurifolia. Journal of Natural Products, 74(5), 1236-1240. https://doi.org/10.1021/np200165t
Poeaim, S., Lordkhem, P., Charoenying, P., & Laipasu, P. (2016). Evaluation of antioxidant, cytotoxic activities and total phenolic content from leaf extracts of Phlogacanthus pulcherrimus. International Journal of Agricultural Technology, 12(7.1), 1657-1667.
Saudan, C., Desmarchelier, A., Sottas, P.-E., Mangin, P., & Saugy, M. (2005). Urinary marker of oral pregnenolone administration. Steroids, 70(3), 179-183. https://doi.org/10.1016/j.steroids.2004.12.007
Song, B., Park, E. Y., Kim, K. J., & Ki, S. H. (2022). Repurposing of benzimidazole anthelmintic drugs as cancer therapeutics. Cancers, 14(19), Article 4601. https://doi.org/10.3390/cancers14194601
Subtel’na, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A., & Lesyk, R. (2010). Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorganic & Medicinal Chemistry, 18(14), 5090-5102. https://doi.org/10.1016/j.bmc.2010.05.073
Szalóki, G., Pantzou, A., Prousis, K. C., Mavrofrydi, O., Papazafiri, P., & Calogeropoulou, T. (2014). Design and synthesis of 21-alkynylaryl pregnenolone derivatives and evaluation of their anticancer activity. Bioorganic & Medicinal Chemistry, 22(24), 6980-6988. https://doi.org/10.1016/j.bmc.2014.10.012
Taha, M., Shah, S. A. A., Afifi, M., Zulkeflee, M., Sultan, S., Wadood, A., Rahim, F., & Ismail, N. H. (2017). Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies. Chinese Chemical Letters, 28(3), 607-611. https://doi.org/10.1016/j.cclet.2016.10.020
Tufail, M. B., Javed, M. A., Ikram, M., Mahnashi, M. H., Alyami, B. A., Alqahtani, Y. S., Sadiq, A., & Rashid, U. (2021). Synthesis, pharmacological evaluation and molecular modelling studies of pregnenolone derivatives as inhibitors of human dihydrofolate reductase. Steroids, 168, Article 108801. https://doi.org/10.1016/j.steroids.2021.108801
Van Dort, M., Santay, L., Schwendner, S. W., & Counsell, R. E. (1989). Potential tumor or organ imaging agents—31. Radioiodinated sterol benzoates and carbamates. International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology, 16(6), 603-607. https://doi.org/10.1016/0883-2897(89)90077-9
Vergallo, C., Torrieri, G., Provenzani, R., Miettinen, S., Moslova, K., Varjosalo, M., Cristiano, M. C., Fresta, M., Celia, C., Santos, H. A., Cilurzo, F., & Marzio, L. D. (2020). Design, synthesis and characterization of a PEGylated stanozolol for potential therapeutic applications. International Journal of Pharmaceutics, 573, Article 118826. https://doi.org/10.1016/j.ijpharm.2019.118826
Yadav, P., Pandey, S. K., Shama, P., Kumar, S., Banerjee, M., & Sethi, A. (2021). Experimental and theoretical investigation of synthesized pregnenolone derivatives via palladium catalyzed cross coupling reactions, their anticancer activity against lung cancer cells. Journal of Molecular Structure, 1245, Article 131115. https://doi.org/10.1016/j.molstruc.2021.131115
Yang, Z., Xu, R., Ali-Rachedi, F., Chambert, S., Xavier, N. M., Soulère, L., Ahmar, M., Mackenzie, G., Davis, E. J., Goodby, J. W., Couling, S. J., & Queneau, Y. (2017). Liquid crystalline glycosteroids and acyl steroid glycosides (ASG). Liquid Crystals, 44(12-13), 2089-2107. https://doi.org/10.1080/02678292.2017.1346211
Yamada, C., Khvorova, A., Kaiser, R., Anderson, E., & Leake, D. (2012). Duplex oligonucleotide complexes and methods for gene silencing by RNA interference. US Patent, US20080085869A1. U.S. Patent and Trademark Office.