Synthesis and Cytotoxicity Evaluation of Novel C-3 Aminocarbamate Pregnenolone Derivatives

Main Article Content

Patchanee Charoenying
Nawasit Chotsaeng

Abstract

Cancer is one of the leading causes of death worldwide. There are many ongoing studies in the search for new treatments or drugs to combat cancer. Similarly, in this research, twelve 3-aminocarbamate pregnenolones (2a2l) were designed, synthesized, and evaluated for their cytotoxicity against five cancer cell lines: Human hepatocellular carcinoma (HepG2), Human colon adenocarcinoma (HT-29), Human oral cavity carcinoma (KB), Human breast adenocarcinoma (MCF-7), Murine leukemia (P388), and one normal cell line, African green monkey kidney fibroblast (Vero), using the MTT assay. Notably, 3-aminobenzylcarbamate pregnenolone (2b), 3-diaminoheptylcarbamate pregnenolone (2f), and 3-diaminopropanolcarbamate derivative (2i) were the most potent against these cancer cell lines. Specifically, for P388 cell lines, these compounds were more potent than the positive control drug, vinblastine sulfate salt. Results from the SAR study demonstrated that the length of the alkyl chain of diaminocarbamate derivatives was crucial for their anticancer properties. These findings will be useful in the future research and development of anticancer drugs.

Article Details

Section
Original Research Articles

References

Ajduković, J. J., Jakimov, D. S., Rárová, L., Strnad, M., Dzichenka, Y. U., Usanov, S., Škorić, D. Đ., Jovanović-Šanta, S. S., & Sakač, M. N. (2021). Novel alkylaminoethyl derivatives of androstane 3-oximes as anticancer candidates: synthesis and evaluation of cytotoxic effects. RSC Advances, 11, 37449-37461. https://doi.org/10.1039/D1RA07613B

Antinarelli, L. M., Carmo, A. M., Pavan, F. R., Leite, C. Q. F., Da Silva, A. D., Coimbra, E. S., & Salunke, D. B. (2012). Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Organic and Medicinal Chemistry Letters, 2(1), https://doi.org/10.1186/2191-2858-2-16

Arshad, F., Khan, M. F., Akhtar, W., Alam, M. M., Nainwal, L. M., Kaushik, S. K., Akhter, M., Parvez, S., Hasan, S. M., & Shaquiquzzaman, M. (2019). Revealing quinquennial anticancer journey of morpholine: A SAR based review. European Journal of Medicinal Chemistry, 167, 324-356. https://doi.org/10.1016/j.ejmech.2019.02.015

Banday, A. H., Akram, S., & Shameem, S. A. (2014). Benzylidine pregnenolones and their oximes as potential anticancer agents: synthesis and biological evaluation. Steroids, 84, 64-69. https://doi.org/10.1016/j.steroids.2014.03.010

Banday, A. H., Mir, B. P., Lone, I. H., Suri, K., & Kumar, H. S. (2010). Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 75(12), 805-809. https://doi.org/10.1016/j.steroids.2010.02.014

Banday, A. H., Zargar, M. I., & Ganaie, B. A. (2011). Synthesis and antimicrobial studies of chalconyl pregnenolones. Steroids, 76(12), 1358-1362. https://doi.org/10.1016/j.steroids.2011.07.001

Baulieu, E.-E., & Schumacher, M. (2000). Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids, 65(10-11), 605-612. https://doi.org/10.1016/S0039-128X(00)00173-2

Bishop, G. J., & Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. The Plant Cell, 14, S97-S110. https://doi.org/10.1105/tpc.001461

Bohl, M. (2018). Molecular structure and biological activity of steroids. CRC Press.

Bratoeff, E., Sainz, T., Cabeza, M., Heuze, I., Recillas, S., Pérez, V., Rodríguez, C., Segura, T., Gonzáles, J., & Ramírez, E. (2007). Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5α-reductase. The Journal of Steroid Biochemistry and Molecular Biology, 107(1-2), 48-56. https://doi.org/10.1016/j.jsbmb.2007.03.038

Bu, M., Cao, T., Li, H., Guo, M., Yang, B. B., Zeng, C., & Hu, L. (2017). Synthesis of 5α,8α-ergosterol peroxide 3-carbamate derivatives and a fluorescent mitochondria-targeting conjugate for enhanced anticancer activities. ChemMedChem, 12(6), 466-474. https://doi.org/10.1002/cmdc.201700021

Chaturvedi, D. (2013). Role of organic carbamates in anticancer drug design. In G. Brahmachari (Ed.). Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds (pp. 117-140). CRC Press

Choudhary, M. I., Alam, M. S., Atta-ur-Rahman, Yousuf, S., Wu, Y.-C., Lin, A.-S., Shaheen, F. (2011). Pregnenolone derivatives as potential anticancer agents. Steroids, 76(14), 1554-1559. https://doi.org/10.1016/j.steroids.2011.09.006

Ehsan, M., Das, M., Stern, V., Du, Y., Mortensen, J. S., Hariharan, P., Byrne, B., Loland, C. J., Kobilka, B. K.,Guan, L. & Chae, P. S. (2018). Steroid‐based amphiphiles for membrane protein study: The importance of alkyl spacers for protein stability. ChemBioChem, 19(13), 1433-1443. https://doi.org/10.1002/cbic.201800106

Erkılıç, U. (2008). Biotechnological modification of steroidal structures. [Master thesis, Middle East Technical University]. Middle East Technical University Archive. https://etd.lib.metu.edu.tr/upload/3/12609258/index.pdf

Fiorot, R. G., Westphal, R., Lemos, B. C., Romagna, R. A., Gonçalves, P. R., Fernandes, M., Ferreira, C. V., Taranto, A. G., & Greco, S. J. (2019). Synthesis, molecular modelling and anticancer activities of new molecular hybrids containing 1, 4-naphthoquinone, 7-chloroquinoline, 1, 3, 5-triazine and morpholine cores as PI3K and AMPK inhibitors in the metastatic melanoma cells. Journal of the Brazilian Chemical Society, 30(9), 1860-1873. https://doi.org/10.21577/0103-5053.20190096

Fu, B., Li, Y., Peng, S., Wang, X., Hu, J., Lv, L., Xia, C., Lu, D., & Qin, C. (2021). Synthesis and pharmacological characterization of glucopyranosyl-conjugated benzyl derivatives as novel selective cytotoxic agents against colon cancer. Royal Society Open Science, 8(2), Article 201642. https://doi.org/10.1098/rsos.201642

Ghosh, A. K., & Brindisi, M. (2015). Organic carbamates in drug design and medicinal chemistry. Journal of Medicinal Chemistry, 58(7), 2895-2940. https://doi.org/10.1021/jm501371s

Goud, N. S., Pooladanda, V., Mahammad, G. S., Jakkula, P., Gatreddi, S., Qureshi, I. A., Alvala, R., Godugu, C., & Alvala, M. (2019). Synthesis and biological evaluation of morpholines linked coumarin–triazole hybrids as anticancer agents. Chemical Biology & Drug Design, 94(5), 1919-1929. https://doi.org/10.1111/cbdd.13578

Graf, M. R., Jia, W., Lewbart, M. L., & Loria, R. M. (2009). The anti‐tumor effects of androstene steroids exhibit a strict structure–activity relationship dependent upon the orientation of the hydroxyl group on carbon‐17. Chemical Biology & Drug Design, 74(6), 625-629. https://doi.org/10.1111/j.1747-0285.2009.00900.x

Gupta, A., Kumar, B. S., & Negi, A. S. (2013). Current status on development of steroids as anticancer agents. The Journal of Steroid Biochemistry and Molecular Biology, 137, 242-270. https://doi.org/10.1016/j.jsbmb.2013.05.011

Huang, Y., Li, G., Hong, C., Zheng, X., Yu, H., & Zhang, Y. (2021). Potential of steroidal alkaloids in cancer: Perspective insight into structure–activity relationships. Frontiers in Oncology, 11, Article 733369. https://doi.org/10.3389/fonc.2021.733369

Hussein, M. A., Iqbal, M. A., Umar, M. I., Haque, R. A., & Guan, T. S. (2019). Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. Arabian Journal of Chemistry, 12(8), 3183-3192. https://doi.org/10.1016/j.arabjc.2015.08.013

Iqbal, A., & Siddiqui, T. (2021). A review on synthesis and biological activities of D-ring modified pregnenolone. Steroids, 170, Article 108827. https://doi.org/10.1016/j.steroids.2021.108827

Lednicer, D. (2011). Steroid chemistry at a glance. John Wiley & Sons.

Lee, Y. B., Park, M. H., & Folk, J. (1995). Diamine and triamine analogs and derivatives as inhibitors of deoxyhypusine synthase: synthesis and biological activity. Journal of Medicinal Chemistry, 38(16), 3053-3061. https://doi.org/10.1021/jm00016a008

Lenci, E., Calugi, L., & Trabocchi, A. (2021). Occurrence of morpholine in central nervous system drug discovery. ACS Chemical Neuroscience, 12(3), 378-390. https://doi.org/10.1021/acschemneuro.0c00729

Loncle, C., Salmi, C., Letourneux, Y., & Brunel, J. M. (2007). Synthesis of new 7-aminosterol squalamine analogues with high antimicrobial activities through a stereoselective titanium reductive amination reaction. Tetrahedron, 63(52), 12968-12974. https://doi.org/10.1016/j.tet.2007.10.032

Lone, I. H., & Bhat, M. A. (2013). Synthesis, molecular properties and MIC studies of D-ring chalcone derivatives of 20-keto pregnenolone. Materials Science Forum, 760, 15-22. https://doi.org/10.4028/www.scientific.net/MSF.760.15

Madia, V. N., Nicolai, A., Messore, A., De Leo, A., Ialongo, D., Tudino, V., Saccoliti, F., De Vita, D., Scipione, L., Artico, M., Taurone, S., Taglieri, L., Santo, R. D., Scarpa, S. & Costi, R. (2021). Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules, 26(3), Article 771. https://doi.org/10.3390/molecules26030771

Maltais, R., & Poirier, D. (2011). Steroid sulfatase inhibitors: a review covering the promising 2000-2010 decade. Steroids, 76(10-11), 929-948. https://doi.org/10.1016/j.steroids.2011.03.010

Matošević, A., & Bosak, A. (2020). Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Archives of Industrial Hygiene and Toxicology, 71(4), 285-299. https://doi.org/10.2478/aiht-2020-71-3466

Merlani, M. I., Amiranashvili, L. S., Mulkidzhanyan, K. G., & Kemertelidze, E. P. (2006). Synthesis and biological activity of certain amino-derivatives of 5α-steroids. Chemistry of Natural Compounds, 42, 322-324. https://doi.org/10.1007/s10600-006-0110-x

Midzak, A., Rammouz, G., & Papadopoulos, V. (2012). Structure–activity relationship (SAR) analysis of a family of steroids acutely controlling steroidogenesis. Steroids, 77(13), 1327-1334. https://doi.org/10.1016/j.steroids.2012.08.019

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4

Pacheco, D. F., Alonso, D., Ceballos, L. G., Castro, A. Z., Roldán, S. B., Díaz, M. G., Testa, A. V., Wagner, S. F., Piloto-Ferrer, J., García, Y. C., Olea, A. F., & Espinoza, L. (2012). Synthesis of four steroidal carbamates with antitumor activity against mouse colon carcinoma CT26WT Cells: In vitro and in silico evidence. International Journal of Molecular Sciences, 23(15), Article 8775. https://doi.org/10.3390/ijms23158775

Pathak, N., Fatima, K., Singh, S., Mishra, D., Gupta, A. C., Kumar, Y., Chanda, D., Bawankule, D. U., Shanker, K., Khan, F., Gupta, A., Luqman, S., & Negi, A. S. (2019). Bivalent furostene carbamates as antiproliferative and antiinflammatory agents. The Journal of Steroid Biochemistry and Molecular Biology, 194, Article 105457. https://doi.org/10.1016/j.jsbmb.2019.105457

Phi, T. D., Pham, V. C., Mai, H. D. T., Litaudon, M., Guéritte, F., Nguyen, V. H., & Chau, V. M. (2011). Cytotoxic steroidal alkaloids from Kibatalia laurifolia. Journal of Natural Products, 74(5), 1236-1240. https://doi.org/10.1021/np200165t

Poeaim, S., Lordkhem, P., Charoenying, P., & Laipasu, P. (2016). Evaluation of antioxidant, cytotoxic activities and total phenolic content from leaf extracts of Phlogacanthus pulcherrimus. International Journal of Agricultural Technology, 12(7.1), 1657-1667.

Saudan, C., Desmarchelier, A., Sottas, P.-E., Mangin, P., & Saugy, M. (2005). Urinary marker of oral pregnenolone administration. Steroids, 70(3), 179-183. https://doi.org/10.1016/j.steroids.2004.12.007

Song, B., Park, E. Y., Kim, K. J., & Ki, S. H. (2022). Repurposing of benzimidazole anthelmintic drugs as cancer therapeutics. Cancers, 14(19), Article 4601. https://doi.org/10.3390/cancers14194601

Subtel’na, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A., & Lesyk, R. (2010). Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorganic & Medicinal Chemistry, 18(14), 5090-5102. https://doi.org/10.1016/j.bmc.2010.05.073

Szalóki, G., Pantzou, A., Prousis, K. C., Mavrofrydi, O., Papazafiri, P., & Calogeropoulou, T. (2014). Design and synthesis of 21-alkynylaryl pregnenolone derivatives and evaluation of their anticancer activity. Bioorganic & Medicinal Chemistry, 22(24), 6980-6988. https://doi.org/10.1016/j.bmc.2014.10.012

Taha, M., Shah, S. A. A., Afifi, M., Zulkeflee, M., Sultan, S., Wadood, A., Rahim, F., & Ismail, N. H. (2017). Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies. Chinese Chemical Letters, 28(3), 607-611. https://doi.org/10.1016/j.cclet.2016.10.020

Tufail, M. B., Javed, M. A., Ikram, M., Mahnashi, M. H., Alyami, B. A., Alqahtani, Y. S., Sadiq, A., & Rashid, U. (2021). Synthesis, pharmacological evaluation and molecular modelling studies of pregnenolone derivatives as inhibitors of human dihydrofolate reductase. Steroids, 168, Article 108801. https://doi.org/10.1016/j.steroids.2021.108801

Van Dort, M., Santay, L., Schwendner, S. W., & Counsell, R. E. (1989). Potential tumor or organ imaging agents—31. Radioiodinated sterol benzoates and carbamates. International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology, 16(6), 603-607. https://doi.org/10.1016/0883-2897(89)90077-9

Vergallo, C., Torrieri, G., Provenzani, R., Miettinen, S., Moslova, K., Varjosalo, M., Cristiano, M. C., Fresta, M., Celia, C., Santos, H. A., Cilurzo, F., & Marzio, L. D. (2020). Design, synthesis and characterization of a PEGylated stanozolol for potential therapeutic applications. International Journal of Pharmaceutics, 573, Article 118826. https://doi.org/10.1016/j.ijpharm.2019.118826

Yadav, P., Pandey, S. K., Shama, P., Kumar, S., Banerjee, M., & Sethi, A. (2021). Experimental and theoretical investigation of synthesized pregnenolone derivatives via palladium catalyzed cross coupling reactions, their anticancer activity against lung cancer cells. Journal of Molecular Structure, 1245, Article 131115. https://doi.org/10.1016/j.molstruc.2021.131115

Yang, Z., Xu, R., Ali-Rachedi, F., Chambert, S., Xavier, N. M., Soulère, L., Ahmar, M., Mackenzie, G., Davis, E. J., Goodby, J. W., Couling, S. J., & Queneau, Y. (2017). Liquid crystalline glycosteroids and acyl steroid glycosides (ASG). Liquid Crystals, 44(12-13), 2089-2107. https://doi.org/10.1080/02678292.2017.1346211

Yamada, C., Khvorova, A., Kaiser, R., Anderson, E., & Leake, D. (2012). Duplex oligonucleotide complexes and methods for gene silencing by RNA interference. US Patent, US20080085869A1. U.S. Patent and Trademark Office.