Muscle Tissue Response to Vipera berus berus and Vipera berus nikolskii Venoms: A Study on Matrix Metalloproteinases and Cytokine Modulation
Main Article Content
Abstract
Vipera berus, also known as the common adder, is a snake species widely distributed in Europe and parts of Asia. Its venom is a mix of enzymatic and non-enzymatic components causing both local and systemic effects including edema, hemorrhage, myonecrosis, gastrointestinal disorders, and rarely – rhabdomyolysis, coagulopathy and hypovolemic shock. Matrix metalloproteinases (MMPs) and cytokines, being inflammatory mediators, participate both in the development of these reactions and in tissue regeneration after acute damage. The current study was aimed at analyzing the concentrations of important mediators of tissue damage, inflammation and regeneration, namely, MMP-1, -2, -3, -8, -10, TIMP-1 (a tissue inhibitor of MMPs), and pro- and anti-inflammatory cytokines, in rat muscle after intraperitoneal injection of venoms from two subspecies of adders – V. berus berus and V. berus nikolskii — to clarify their role in the local response of skeletal muscle to the studied venoms. Changes in muscle tissue were revealed, namely, significant increase in almost all MMPs including MMP-2, as well as TIMP-1, IFN-γ and anti-inflammatory IL-4 and IL-10 content. Moreover, a tendency for some pro-inflammatory cytokines levels to decline 24 h after venom administration was observed, which may be a sign of inflammation suppression and the beginning of reparative processes associated with extracellular matrix remodeling and formation of an optimal environment for muscle regeneration. However, to establish the exact mechanisms of the changes we found, further studies are needed. The ability of V. berus nikolskii venom to induce more pronounced changes was also shown. Our results may be useful for the development of differentiated and more effective treatment strategies for the consequences of bites by these snakes, which include myonecrosis
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Alameddine, H. S., & Morgan, J. E. (2016). Matrix metalloproteinases and tissue inhibitor of metalloproteinases in inflammation and fibrosis of skeletal muscles. Journal of Neuromuscular Diseases, 3(4), 455-473. https://doi.org/10.3233/JND-160183
Al-Shekhadat, R. I., Lopushanskaya, K. S., Segura, Á., Gutiérrez, J. M., Calvete, J., & Pla, D. (2019). Vipera berus berus venom from Russia: venomics, bioactivities and preclinical assessment of microgen antivenom. Toxins, 11(2), Article 90. https://doi.org/10.3390/toxins11020090
Ansari, M. A., Shaikh, S., Muteeb, G., Rizvi, S. M. D., Shakil, S., Alam, A., Tripathi, R., Ghazal, F., Rehman, A., Ali, S. A., Pandey, A. K., & Ashraf, G. M. (2013). Role of matrix metalloproteinases in cancer. In G. M. Ashraf & I. A. Sheikh (Eds.), Advances in Protein Chemistry (pp. 1-19). OMICS Group eBooks.
Bittenbinder, M. A., Bergkamp, N. D., Slagboom, J., Bebelman, J. P. M., Casewell, N. R., Siderius, M. H., Smit, M. J., Kool, J., & Vonk, F. J. (2023). Monitoring snake venom-induced extracellular matrix degradation and identifying proteolytically active venom toxins using fluorescently labeled substrates. Biology,12 (6), Article 765. https://doi.org/10.3390/biology12060765
Bocian, A., Urbanik, M., Hus, K., Łyskowski, A., Petrilla, V., Andrejčáková, Z., Petrillová, M., & Legath, J. (2016). Proteome and peptidome of Vipera berus berus venom. Molecules, 21(10), Article 1398. https://doi.org/10.3390/molecules21101398
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
Chang, M. (2023). Matrix metalloproteinase profiling and their roles in disease. Royal Society of Chemistry advances, 13(9), 6304-6316. https://doi.org/10.1039/d2ra07005g
Chávez-Galán, L., Olleros, M.L., Vesin, D., & Garcia, I. (2015). Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Frontiers in Immunology, 6, Article 263. https://doi.org/10.3389/fimmu.2015.00263
Costet, J. (2016). Inflammatory response to naturally occurring tiger snake envenomation in dogs, with a special emphasis on IL-6. https://dumas.ccsd.cnrs.fr/dumas-04546273 v1/file/Costet_17534.pdf
Crowther, J. R. (2000). The ELISA guidebook. (2 nd ed.). Humana Press.
Czajka, U., Wiatrzyk, A., & Lutyńska, A. (2013). Mechanism of Vipera berus venom activity and the principles of antivenom administration in treatment. Przeglad Epidemiologiczny, 67(4), 641-646.
Damm, M., Hempel, B.-F., & Süssmuth, R. D. (2021). Old world vipers – a review about snake venom proteomics of Viperinae and their variations. Toxins, 13(6), Article 427. https://doi.org/10.3390/toxins13060427
Denis, D., Lamireau, T., Llanas, B., Bedry, R., & Fayon, M. (1998). Rhabdomyolysis in European viper bite. Acta Paediatrica, 87(9), 1013-1015. https://doi.org/10.1080/080352598750031743
Garkowski, A., Czupryna, P., Zajkowska, A., Pancewicz, S., Moniuszko, A., Kondrusik, M., Grygorczuk, S., Gołębicki, P., Letmanowski, M., & Zajkowska, J. (2012). Vipera berus bites in Eastern Poland – a retrospective analysis of 15 case studies. Annals of Agricultural and Environmental Medicine, 19(4), 793-797.
Gehlert, S., & Jacko, D. (2019). The role of the immune system in response to muscle damage. Deutsche Zeitschrift für Sportmedizin, 70(10), 242-249. htpps://doi.org/10.5960/dzsm.2019.390
Gutiérrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R. A., Williams, D. J., & Warrell, D. A. (2017). Snakebite envenoming. Nature Reviews Disease Primers, 3, Article 17063. https://doi.org/10.1038/nrdp.2017.63
Gutiérrez, J. M., Escalante, T., Hernández, R., Gastaldello, S., Saravia-Otten, P., & Rucavado, A. (2018). Why is skeletal muscle regeneration impaired after myonecrosis snduced by viperid snake venoms? Toxins, 10(5), Article 182. https://doi.org/10.3390/toxins10050182
Koval, T. V., Ishchuk, T. V., Grebinyk, D. M., Raetska, Y. B., Sokur, O. V., Savchuk, O. M., & Ostapchenko, L. I. (2018). Matrix metalloproteinase functioning in case of esophagus acid burn. Biomedical Research, 29(16), 3169-3173.
Kovalchuk, S. I., Ziganshin, R. H., Starkov, V. G., Tsetlin, V. I., & Utkin, Y. N. (2016). Quantitative proteomic analysis of venoms from russian vipers of pelias group: phospholipases A₂ are the main venom components. Toxins, 8(4), Article 105. https://doi.org/10.3390/toxins8040105
Kumar, N. D., Devakirubai, E., & Andal, P. (2023). Snake bite: the neglected tropical disease (NTD). International Journal of Nursing Education and Research, 1(3), 269-272, https://doi.org/10.52711/2454-2660.2023.00061
Lomonte, B. (1994). Tissue damage and inflammation induced by snake venoms. [unpublished PhD thesis]. University of Göteborg.
Nicola, M. R. D., Pontara, A., Kass, G. E. N., Kramer, N. I., Avella, I., Pampena, R., Mercuri, S. R., Dorne, J. L. C. M. & Paolino, G. (2021). Vipers of major clinical relevance in Europe: taxonomy, venom composition, toxicology and clinical management of human bites. Toxicology, 453, Article 152724. https://doi.org/10.1016/j.tox.2021.152724
Oliveira, A. L., Viegas, M. F., da Silva, S. L., Soares, A. M., Ramos, M. J., & Fernandes, P. A. (2022). The chemistry of snake venom and its medicinal potential. Nature Reviews Chemistry, 6(7), 451-469. https://doi.org/10.1038/s41570-022-00393-7
Palamarchuk, M., Bobr, A., Mudrak, A., Gunas, I., Maievskyi, O., Samborska, I., Vovk, T., Halenova, T., Raksha, N., Savchuk, O., & Ostapchenko, L. (2023). Proteolytic homeostasis in the tissue of the spleen and the heart of rats injected with the venom of Vipera berus berus and Vipera berus nikolskii. Current Applied Science and Technology, 23(6), 1-13, https://doi.org/10.55003/cast.2023.06.23.015
Raetska, Y. B., Chornenka, N. M., Koval, T. V., Savchuk, O. M., Beregova, T. V., & Ostapchenko, L. I. (2017). Cytokine profile indicators in rat blood serum in a model of esophagus burn induced by antioxidant chemical preparation. Biomedical Research and Therapy, 4(9), 1591-1606. https://doi.org/10.15419/bmrat.v4i9.367
Resiere, D., Mehdaoui, H., & Neviere, R. (2022). Inflammation and oxidative stress in snakebite envenomation: a brief descriptive review and clinical implications. Toxins, 14(11), Article 802. https://doi.org/10.3390/toxins14110802
Rucavado, A., Escalante, T., Teixeira, C. F., Fernándes, C. M., Diaz. C., & Gutiérrez, J. M. (2002). Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper. Mediators of Inflammation, 11(2), 121-128. https://doi.org/10.1080/09629350220131980
Seifert, S. A., Armitage, J. O., & Sanchez, E. E. (2022). Snake envenomation. The New England Journal of Medicine, 386(1), 68-78. https://doi.org/10.1056/NEJMra2105228
Shitikov, V. K., Malenyov, A. L., Gorelov, R. A., & Bakiev, A. G. (2018). “Dose-response” models with mixed parameters by the example of venom toxicity estimation of the common european adder Vipera berus. Principy Èkologii, 2, 150-160.
Siigur, J., & Siigur, E. (2022). Biochemistry and toxicology of proteins and peptides purified from the venom of Vipera berus berus. Toxicon: X, 15, Article 100131. https://doi.org/10.1016/j.toxcx.2022.100131
Slapak, E. J., Duitman, J., Tekin, C., Bijlsma, M. F., & Spek, C. A. (2020). Matrix metalloproteases in pancreatic ductal adenocarcinoma: key drivers of disease progression? Biology, 9(4), Article 80. https://doi.org/10.3390/biology9040080
Strizova, Z., Benesova, I., Bartolini, R., Novysedlak, R., Cecrdlova, E., Foley, L. K., & Striz, I. (2023). M1/M2 macrophages and their overlaps – myth or reality? Clinical Science, 137(15), 1067-1093. https://doi.org/10.1042/CS20220531
Tasoulis, T., & Isbister, G. K. (2017). A review and database of snake venom proteomes. Toxins, 9(9), Article 290. https://doi.org/10.3390/toxins9090290
Teixeira, C., Fernandes, C. M., Leiguez, E., & Chudzinski-Tavassi, A. M. (2019). Inflammation induced by platelet-activating viperid snake venoms: perspectives on thromboinflammation. Frontiers in Immunology, 10, Article 2082. https://doi.org/10.3389/fimmu.2019.02082
Wang, X., & Zhou, L. (2022). The many roles of macrophages in skeletal muscle injury and repair. Frontiers in Cell and Developmental Biology, 10, Article 952249. https://doi.org/10.3389/fcell.2022.952249
Xiao, H., Pan, H., Liao, K., Yang, M., & Huang, C. (2017). Snake venom PLA2, a promising target for broad-spectrum antivenom drug development. BioMed Research International, 2017, Article 6592820. https://doi.org/10.1155/2017/6592820
Ziemkiewicz, N., Hilliard, G., Pullen, N.A., & Garg, K. (2021). The role of innate and adaptive immune cells in skeletal muscle regeneration. International Journal of Molecular Sciences, 22(6), Article 3265. https://doi.org/10.3390/ijms22063265
Zuliani, J. P. (2023). Alarmins and inflammatory aspects related to snakebite envenomation. Toxicon, 226, Article 107088. https://doi.org/10.1016/j.toxicon.2023.107088