Physical and Mechanical Properties of Indian Oyster Mushroom Mycelium/Sawdust Composites for Biodegradable Packaging Materials

Main Article Content

Pimpet Sratong-on
Kanyarat Puttawongsakul
Nawin Kantawee

Abstract

Mycelium-based composite (MBC) offers an excellent sustainable alternative to hydrocarbon-based materials, especially styrofoam for packaging, due to its abundance of fungal mycelium that grows quickly on agricultural substrates, its biodegradable and its lightweight. The mycelium of a commercial mushroom species, Pleurotus ostreatus (PO), is used to fabricate MBC for packaging materials. Another species, Pleurotus pulmonarius (PP), prefers warmer weather, making it more common in tropical countries. Nevertheless, there is a lack of studies of PP mycelium-based composites and their mechanical and physical properties. This study investigated the physical and mechanical properties of PP mycelium/sawdust composite and compared to PO mycelium/sawdust composite. The results showed that the average density of PP/sawdust and PO/sawdust composites were 292.14 and 272.17 kg/m3, respectively, which fell within the range of low-density polyurethane foam. The final mass gain due to water absorption into PO/sawdust specimens was 144.04%, 1.41 times lower than PP/sawdust specimens. Furthermore, PP/sawdust composite exhibited 7.5 times faster water absorption rate than PO/sawdust composite, indicating that PO/sawdust had better water resistance. The PP/sawdust composite produced an equivalent compressive modulus to the PO/sawdust composite under compression up to 1.34 MPa of maximum value. Thus, the PP/sawdust composite showed excellent potential for substitution of biodegradable packages made from PO/sawdust composite as they contributed the equivalent strength; however, the PO/sawdust composite exhibited superior water resistance to the PP/sawdust composite. Consequently, PO/sawdust should be more advantageous if the biodegradable packaging is required to be of strength as high as the low-density polyurethane foam and of compatible water resistance.

Article Details

Section
Original Research Articles

References

Aiduang, W., Chanthaluck, A., Kumla, J., Jatuwong, K., Srinuanpan, S., Waroonkun, T., Oranratmanee, R., Lumyong, S., & Suwannarach, N. (2022a). Amazing fungi for eco-friendly composite materials: A comprehensive review. Journal of Fungi, 8(8), Article 842. https://doi.org/10.3390/jof8080842

Aiduang, W., Jatuwong, K., Jinanukul, P., Suwannarach, N., Kumla, J., Thamjaree, W., Teeraphantuvat, T., Waroonkun, T., Oranratmanee, R., & Lumyong, S. (2024). Sustainable Innovation: Fabrication and Characterization of Mycelium-Based Green composites for modern interior materials using agro-industrial wastes and different species of fungi. Polymers, 16(4), Article 550. https://doi.org/10.3390/polym16040550

Aiduang, W., Kumla, J., Srinuanpan, S., Thamjaree, W., Lumyong, S., & Suwannarach, N. (2022b). Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. Journal of Fungi, 8(11), Article 1125. https://doi.org/10.3390/jof8111125

Alemu, D., Tafessa, M., & Mondal, A. (2022). Mycelium-based composite: The future sustainable biomaterial. International Journal of Biomaterials, 2022, Article 8401528. https://doi.org/10.1155/2022/8401528

Anukwuorji, C. A., Ebije, I., Okigbo, R. N., Eze, H. N., Ndubuisi, J. C., Uka, C. J., & Okolie, C. U. (2023). Cultivation of Pleurotus pulmonarius utilizing substrates derived from local agricultural waste. Fungal Biotec, 3(1), 1-7. https://doi.org/10.5943/FunBiotec/3/1/1

Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., & Wösten, H. A. B. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials Design, 161, 64-71. https://doi.org/10.1016/j.matdes.2018.11.027

ASTM International. (2000). Standard test methods for wood-based structural panels in compression. https://www.astm.org/d3501-05ar18.html

ASTM International. (2002). Standard test method for moisture content of paper and paperboard by oven drying. https://file.yzimgs.com/175706/2011090910013559.pdf

Attias, N., Danai, O., Ezov, N., Tarazi, E., & Grobman, J. Y. (2017). Developing novel applications of mycelium based bio-composite materials for design and architecture. In Proceedings of the International Scientific Conferences Building with bio-based materials: Best Practice and performance specification (pp.7-17). University of Zagreb.

Bootklad, M., & Kaewtatip, K. (2013). Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers, 97(2), 315-320. https://doi.org/10.1016/j.carbpol.2013.05.030

Chong, B. W., Othman, R., Ramadhansyah, P. J., Doh, S. I., & Li, X. (2020). Properties of concrete with eggshell powder: A review. Physics and Chemistry of the Earth, 120, Article 102951. https://doi.org/10.1016/j.pce.2020.102951

Chulikavit, N., Huynh, T., Dekiwadia, C., Khatibi, A., Mouritz, A., & Kandare, E. (2022). Influence of growth rates, microstructural properties and biochemical composition on the thermal stability of mycelia fungi. Scientific Reports. 12(1), 1-14. https://doi.org/10.1038/s41598-022-19458-0

Chulikavit, N., Huynh, T., Khatibi, A., Das, R., & Kandare, E. (2023). Thermal degradation and flame spread characteristics of epoxy polymer composites incorporating mycelium. Scientific Reports, 13(1), 1-19. https://doi.org/10.1038/s41598-023-45097-0

Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., & Laet, L. D. (2018). Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One, 14(7), 1-17. https://doi.org/10.1371/journal.pone.0213954

Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx J., De Laet, L., & Peeters, E. (2020). A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of the Total Environment, 725, Article 138431. https://doi.org/10.1016/j.scitotenv.2020.138431

Fletcher, I., Freer, A., Ahmed, A., & Fitzgerald, P. (2019). Effect of temperature and growth media on mycelium growth of Pleurotus ostreatus and Ganoderma lucidum strains. Cohesive Journal of Microbiology and Infectious Disease, 2(5), 1-5. https://doi.org/10.31031/CJMI.2019.02.000549

Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. https://doi.org/10.1007/s10853-019-03990-y

Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports, 7, 1-11. https://doi.org/10.1038/srep41292

Holt, G. A., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J. D., & Pelletier, M. G. (2012). Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. Journal of Biobased Materials and Bioenergy, 6(4), 431-439. https://doi.org/10.1166/jbmb.2012.1241

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific Reports, 7(1), Article 13070. https://doi.org/10.1038/s41598-017-13295-2

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2018). Mechanical behavior of mycelium-based particulate composites. Journal of Materials Science, 53(24), 16371-16382. https://doi.org/10.1007/s10853-018-2797-z

Jones, M. P., Lawrie, A. C., Huynh, T. T., Morrison, P. D., Mautner, A., Bismarck, A., & John, S. (2019). Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochemistry, 80, 95-102. https://doi.org/10.1016/j.procbio.2019.01.018

Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 187, Article 108397. https://doi.org/10.1016/j.matdes.2019.108397

Khorsheed, A. N., & Ahmed, A. S. (2023). Growing (Pleurotus pulmonarius) on various local substrates in the Kurdistan region of Iraq. IOP Conferences Series: Earth and Environmental Science, 1252(1), Article 012108. https://doi.org/10.1088/1755-1315/1252/1/012108

Kohphaisansombat, C., Jongpipitaporn, Y., Laoratanakul, P., Tantipaibulvut, S., Euanorasetr, J., Rungjindamai, N., Chuaseeharonnachai, C., Kwantong, P., Somrithipol, S., & Boonyuen, N. (2023). Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. Mycology, 1-18. https://doi.org/10.1080/21501203.2023.2273355

Koutrotsios, G., Patsou, M., Mitsou, E. K., Bekiaris, G., Kotsou, M., Tarantilis, P. A., Pletsa, V., Kyriacou, A., & Zervakis, G. I. (2019). Valorization of olive by-products as substrates for the cultivation of Ganoderma lucidum and Pleurotus ostreatus mushrooms with enhanced functional and prebiotic properties. Catalysts, 9(6), Article 537. https://doi.org/10.3390/catal9060537

Kuribayashi, T., Lankinen, P., Hietala, S., & Mikkonen, K. S. (2022). Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Composites Part A: Applied Science and Manufacturing, 152, Article 106688. https://doi.org/10.1016/j.compositesa.2021.106688

Lelivelt, R. J. J. (2015). The mechanical possibilities of mycelium materials. [Master thesis] Eindhoven University of Technology. https://research.tue.nl/en/studentTheses/the-mechanical-possibilities-of-mycelium-materials

Lifshitz, J. M. (1983). Some mechanical properties of rigid polyurethane structural foam. Polymer Engineering and Science, 23(3), 144-154. https://doi.org/10.1002/pen.760230308

Mane, J. V., Chandra, S., Sharma, S., Ali, H., Chavan, V. M., Manjunath, B. S., & Patel, R. J. (2017). Mechanical property evaluation of polyurethane foam under quasi-static and dynamic strain rates- An experimental study. Procedia Engineering, 173, 726-731. https://doi.org/10.1016/j.proeng.2016.12.160

Ongpeng, J. M. C., Inciong, E., Sendo, V., Soliman, C., & Siggaoat, A. (2020). Using waste in producing bio-composite mycelium bricks. Applied Sciences, 10(15), Article 5303. https://doi.org/10.3390/app10155303

Owuamanam, S., & Cree, D. (2020). Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: A review. Journal of Composites Science, 4(2), Article 70. https://doi.org/10.3390/jcs4020070

Pham, V. L., Pham, N. D. H., Nguyen, H. D., Le, T. H., & Ho, B. T. Q. (2023). Monokaryotic characteristics and mating types of phoenix mushroom (Pleurotus pulmonarius) cultivars in the South Vietnam. International Journal of Agricultural Technology, 19(1), 189-202.

Rashid, A. A., Khalid, M. Y., Imran, R., Ali, U., & Koc, M. (2020). Utilization of banana fiber-reinforced hybrid composites in the sports industry. Materials, 13(14), Article 3167. https://doi.org/10.3390/ma13143167

Rigobello, A., & Ayres, P. (2022). Compressive behaviour of anisotropic mycelium-based composites. Scientific Reports, 12(1), 1-13. https://doi.org/10.1038/s41598-022-10930-5

Rungjindamai, N., Trakunjarunkit, K., Posalee, T., & Limpanya, D. (2024). Utilization of Agricultural Waste for the Cultivation of Pleurotus Mushrooms in Thailand. Journal of Pure and Applied Microbiology, 18(2), 941-950. https://doi.org/10.22207/JPAM.18.2.07

Sharma, S. R., Kumar, S., & Sharma, V. P. (2007). Diseases and competitor moulds of mushrooms and their management. National Research Centre for Mushroom (ICAR).

Sharma, V. P., Singh, R., Kumar, S., & Ahlawat, O. P. (2011). Thermal death points of some edible mushrooms under dry and wet conditions. Indian Journal of Mushrooms, 29(2), 29-33.

Soh, E., Saeidi, N., Javadian, A., Hebel, D. E., & Le Ferrand, H. (2021). Effect of common foods as supplements for the mycelium growth of Ganoderma lucidum and Pleurotus ostreatus on solid substrates. PLoS One, 16(11), 1-14. https://doi.org/10.1371/journal.pone.0260170

Sun, L., & Gong, K. (2001). Silicon-based materials from rice husks and their application. Industrial and Engineering Chemistry Research, 40(25), 5861-5877. https://doi.org/10.1021/ie010284b

Sydor, M., Cofta, G., Doczekalska, B., & Bonenberg, A. (2022). Fungi in mycelium-based composites: usage and recommendations. Materials, 15(18), Article 6283. https://doi.org/10.3390/ma15186283

Thomas, B. S. (2018). Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3913-3923. https://doi.org/https://doi.org/10.1016/j.rser.2017.10.081

van den Brandhof, J., & Wösten, H. A. B. (2022). Risk assessment of fungal materials. Fungal Biology and Biotechnology, 9(1), Article 3. https://doi.org/10.1186/s40694-022-00134-x

Yu, Y., Liu, T., Wang, Y., Liu, L., He, X., Li, J., Martin, F.M., Peng, W., & Tan, H. (2024). Comparative analyses of Pleurotus pulmonarius mitochondrial genomes reveal two major lineages of mini oyster mushroom cultivars. Computational and Structural Biotechnology Journal, 23, 905-917. https://doi.org/10.1016/j.csbj.2024.01.021

Zhang, M., Zhang, Z., Zhang, R., Peng, Y., Wang, M., & Cao, J. (2023). Lightweight, thermal insulation, hydrophobic mycelium composites with hierarchical porous structure: Design, manufacture and applications. Composites Part B: Engineering. 266, Article 111003. https://doi.org/10.1016/j.compositesb.2023.111003

Zhang, X., Hu, J., Fan, X., & Yu, X. (2022). Naturally grown mycelium-composite as sustainable building insulation materials. Journal of Cleaner Production, 342, Article 130784. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130784

Zharare, G. E., Kabanda, S. M., & Poku, J. Z. (2010). Effects of temperature and hydrogen peroxide on mycelial growth of eight Pleurotus strains. Scientia Horticulturae, 125(2), 95-102. https://doi.org/10.1016/j.scienta.2010.03.006