Terahertz Wave Technology for Medical Treatment and Diagnosis

Main Article Content

Ornnicha Kongwut
Phatsaran Laohhapaibon

Abstract

This article provides an overview of the principles, properties, and medical applications of terahertz waves. Terahertz (THz) waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, lying between the microwave and infrared regions of the spectrum. They possess unique properties such as the ability to penetrate various materials, a non-ionizing nature, and specific spectral responses to certain biological substances. The working principle of terahertz imaging relies on measuring the absorption, reflection, and scattering of terahertz waves as they pass through biological tissues. Terahertz imaging offers a number of advantages over conventional medical imaging techniques, including higher resolution, better differentiation of soft tissues, and the ability to provide both structural and functional information. Applications discussed in the article include skin cancer detection, dentistry, surgery, and drug monitoring. However, there are challenges and limitations to overcome, such as the need for higher image resolution, miniaturization and improvement of devices, and evaluation of long-term safety. Future opportunities lie in integrating terahertz imaging with artificial intelligence to enhance diagnostic accuracy and efficiency. In conclusion, terahertz waves demonstrate significant potential for various medical applications, offering a safe, non-invasive, and high-resolution imaging modality. While further research and development are necessary to address current limitations, translating this technology into clinical practice could ultimately lead to improved patient care and outcomes.

Article Details

How to Cite
Kongwut, O., & Laohhapaibon, P. (2025). Terahertz Wave Technology for Medical Treatment and Diagnosis. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0262839. https://doi.org/10.55003/cast.2025.262839
Section
Review Ariticle

References

Amirov, A. (2022). Multiferroic, magnetic, and magnetoelectric nanomaterials for medical applications. Magnetic Materials and Technologies for Medical Applications, 2022, 469-484. https://doi.org/10.1016/b978-0-12-822532-5.00003-0

Bratchenko, I., Bratchenko, L., Moryatov, A. A., Khristoforova, Y. A., Artemyev, D. N., Myakinin, O. O., Orlov, A. E., & Kozlov, S. V. (2021). In vivo diagnosis of skin cancer with a portable Raman spectroscopic device, Experimental Dermatology, 30(5), 652-663. https://doi.org/10.1111/exd.14301

Chopard, A., Guillet, J.-P., Gellie, P., Recur, B., Balacey, H., & Mounaix, P. (2023). Skeletonization and 3D rendering with real time terahertz tomography. Optics Continuum, 2(5), 1060-1067. https://doi.org/10.1364/optcon.486227

Chopra, N. & Lloyd-Hughes, J. (2024). Low aberration optical design to maximise the bandwidth of THz time-domain spectroscopy. In Proceedings of 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2024) (pp. 84-85), IEEE.

Cong, M., Li, W., Liu, Y., Bi, J., Wang, X., Yang, X., Zhang, Z., Zhang, X., Zhao, Y.-N., Zhao, R., & Qiu, J., (2023). Biomedical application of terahertz imaging technology: a narrative review. Quantitative Imaging in Medicine and Surgery, 13(12), 8768-8786. https://doi.org/10.21037/qims-23-526

Constantin, F. L. (2020). Sensing multifrequency THz-waves with a photomixer. In Imaging and applied optics congress (paper JW5C.5). OSA Technical Digest (Optica Publishing Group). https://doi.org/10.1364/3D.2020.JW5C.5

Denisov, G. G., Glyavin, M. Y., Fedotov, A. E., & Zotova, I. V. (2020). Theoretical and experimental investigations of Terahertz-Range Gyrotrons with frequency and spectrum control. Journal of Infrared, Millimeter and Terahertz Waves, 41(9), 1131-1143. https://doi.org/10.1007/s10762-020-00672-8

Dexheimer, S. L. (2020). Terahertz spectroscopy: Principles and applications. CRC press.

Dressel, M. (2023). Electrodynamics of solids: Low-energy spectroscopy of correlated electrons. In Proceedings of 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-2). IEEE.

Dutta, B., Root, K., Ullmann, I., Wagnerm F., Mayr, M., Seuret, M., Thies, M., Stromer, D., Christlein, V., Schϋr, J., Maier, A., & Huang, Y. (2022). Deep learning for terahertz image denoising in nondestructive historical document analysis. Scientific Reports, 12, Article 22554. https://doi.org/10.1038/s41598-022-26957-7

Fujita, K. (2020). Room temperature terahertz nonlinear quantum cascade lasers and their applications. In Proceedings of 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-2). IEEE.

Gezimati, M., & Singh, G. (2023). Advances in terahertz technology for cancer detection application. Optical and Quantum Electronics, 55(2), Article 151. https://doi.org/10.1007/s11082-022-04340-0

Gezimati, M., & Singh, G. (2024). Terahertz imaging technology for localization of cancer tumours: a technical review. Multimedia Tools and Applications, 83, 33675-33711. https://doi.org/10.1007/s11042-023-16596-z

Hu, J., Xu, Z., Li, M., He, Y., Sun, X. & Liu, Y. (2021). Detection of foreign-body in milk powder processing based on terahertz imaging and spectrum. Journal of Infrared Milli Terahertz Waves, 42, 878-892. https://doi.org/10.1007/s10762-021-00802-w

Jäckel, A., Ulm, D., Kleine-Ostmann, T., Castro-Camus, E., Koch, M. & Ornik, J. (2022). Achromatic quarter-waveplate for the Terahertz frequency range made by 3D printing. Journal of Infrared Millimeter, and Terahertz Waves, 43, 573-581. https://doi.org/10.1007/s10762-022-00870-6

Jung, B. K. & Kürner, T. (2024). Energy efficient interference management for THz X-Haul using reconfigurable intelligent surfaces. In Proceedings of 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2024) (pp. 1-2), IEEE.

Kakikawa, M., Matsuzuka, R., & Yamaguchi, Y., (2024). Effect of Terahertz radiation on drug activity in bacterial cells. Journal of Electromagnetic Waves and Applications, 38(13), 1514-1522. https://doi.org/10.1080/09205071.2024.2380386

Kamruzzaman, M. M., Trabelsi, Y., Nishat, H., Perinbaraj, R., Ashok, P., & Mekala, R. (2024). The smart enhancement of near field sensing range for terahertz antenna in 6G wireless communication systems. Optical and Quantum Electronics. 56(9), Artice 1452. https://doi.org/10.1007/s11082-024-06898-3

Khanna, V. K. (2021). Practical terahertz electronics: Devices and applications, Vol 1. IOP Publishing. https://doi.org/10.1088/978-0-7503-3171-5ch1

Kubiczek, T., Kolpatzeck, K., Schultze, T., & Balzer, J. C. (2024). A highly frequency-selective 3D-printed dielectric structure for the terahertz range. Journal of Infrared, Millimeter, and Terahertz Waves, 45, 322-336. https://doi.org/10.1007/s10762-024-00973-2

Kulkarni, P., Ratnaparkhi, A., & Kumar, S. (2022). Metamaterial with absorbance in terahertz frequency range. COJ Electronics and Communications, 2(4), 1-4. https://doi.org/10.31031/cojec.2022.02.000541

Kulygin, M. L., & Litovsky, I. A. (2020). Sub-terahertz complex permittivity measurement method using cavity switches. Journal of Infrared, Millimeter, and Terahertz Waves, 41(12), 1567-1575. https://doi.org/10.1007/s10762-020-00742-x

Kurnikov, M. A. & Bakunov, M. I. (2024). Noncollinear electro-optic detection of terahertz waves: Advantages and limitations. Journal of Applied Physics, 135(16), Article 163102. https://doi.org/10.1063/5.0206493

Kutas, M., Hennig, J., Freymann, G. V. & Molter, D. (2024). Imaging with undetected photons in the terahertz frequency range. In Proceedings of 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-2). IEEE.

Lee, J. & Kim, T. (2021). Exploring the effectiveness and utilization of terahertz waves for the protection of human body. Protection Convergence, 6(1), 41-49. https://doi.org/10.22471/protective.2021.6.1.41

Li, D., Yang, Z., Fu, A., Chen, T., Chen, L., Tang, M., Zhang, H., Mu. N., Wang, S., Liang, G. & Wang, H., (2020). Detecting melanoma with a Terahetz spectroscopy imaging technique. Spectrochimica Acta Patr A: Molecular and Biomolecular Spectroscopy, 234, Article 118229. https://doi.org/10.1016/j.saa.2020.118229

Li, Y., Liu, L., Wang, Z., Chang, T., Xu, W, Wu, Y., Yang, H., & Jiang, D., (2022). To estimate performance of artificial neural network model based on terahertz spectrum: Gelatin identification as an example. Frontiers in Nutrition, 9, Article 925717. https://doi.org/10.3389/fnut.2022.925717

Liu, N., Cui, G., Song, R. & Shang, G. (2023). Trends of E-band high-capacity mobile communication system. In Proceedings of conference on infrared, millimeter, terahertz waves and applications (IMT2022) (p. 125651C). SPIE.

Lu, Y., Huang, Y., Cheng, J., Ma, R., Xu, X., Zang, Y., Wu, Q. & Xu, J. (2024). Nonlinear optical physics at terahertz frequency. Nanophotonics, 13(18), 3279-3298. https://doi.org/10.1515/nanoph-2024-0109

Makino, K., Agulto, V. C., Hatayama, S., Kato, K., Iwamoto, T. & Nakajima, M. (2024). Characterization of dielectric properties of metal films in terahertz frequency range. In Proceedings of 2024 49th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz) (pp. 1-2). IEEE.

Monnai, Y., Lu, X. & Sengupta, K. (2023). Terahertz beam steering: from fundamentals to applications. Journal of Infrared, Millimeter, and Terahertz Waves, 44, 169-211. https://doi.org/10.1007/s10762-022-00902-1

Oh, J.-S., & Choi, S.-B. (2022). Medical applications of magnetorheological fluids—a review. In A. M. Tishin (Ed.). Magnetic Materials and Technologies for Medical Applications (pp 485-500). Woodhead Publishing.

Pyatakov, A., Pyatakova, Z., & Tishin, A. M. (2022). Short history overview of magnetism and magnetic technologies for medical applications. In A. M. Tishin (Ed.). Magnetic materials and technologies for medical applications (pp. 3-21). Woodhead Publishing. https://doi.org/10.1016/b978-0-12-822532-5.00007-8

Saleeb, A., Hassan, A. EI-Rabaie, S. & Elkorany, A. (2024). Manipulation of electromagnetic waves via graphene-based coding metamaterials for Terahertz applications. Journal of Advanced Engineering Trends, 43(1), 11-16. https://doi.org/10.21608/jaet.2022.130971.1146

Shavrov, V. G. & Shcheglov, V. I. (2021). Magnetostatic waves in inhomogeneous fields. CRC Press. https://doi.org/10.1201/9781003046226

Shi, S., Yuan, S., Zhou, J., & Jiang, P. (2023). Terahertz technology and its application in head and neck diseases. iScience, 26(7), Article 107060. https://doi.org/10.1016/j.isci.2023.107060

Singh, J., Jha, S. K., Singh, V., & Awasthi, Y. K. (2021). Design of THz low pass filter using split-ring resonators. Optik, 247, Article 167925. https://doi.org/10.1016/j.ijleo.2021.167925

Singh, P., & Awasthi, Y. K. (2024). Characterization of thin film coupled microstrip line for terahertz frequency - range. International Journal of Science and Research, 13(12), 642-647. https://doi.org/10.21275/sr241208105529

Stringer, M. (2023) THz Imaging: Biomedical application. institute of microwaves and photonics. University of Leeds. https://static.aminer.org/pdf/PDF/000/317/298/ imaging_with_thz_pulses.pdf

Tomimura, Y., Satou, A. & Kita, T. (2024). Generation of millimeter waves and sub-terahertz waves using a two-wavelength tunable laser for a terahertz wave transceiver. Photonics, 11(9), Article 811. https://doi.org/10.3390/photonics11090811

Tzydynzhapov, G., Gusikhin, P., Muravev, V., Dremin, A., Nefyodov, Y. & Kukushkin, I. (2020). New real-time sub-terahertz security body scanner. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 632-641. https://doi.org/10.1007/s10762-020-00683-5

Vogel, T., & Saraceno, C. J. (2024). Advanced data processing of THz-Time domain spectroscopy data with sinusoidally moving delay lines. Journal of Infrared, Millimeter, and Terahertz Waves, 45, 967-983. https://doi.org/10.1007/s10762-024-01012-w

Walker, H. S., & Hardwick, J., (2022) Non-melanoma skin cancer. Surgery, 40(1), 39-45. https://doi.org/10.1016/j.mpsur.2021.11.004