Intermediates Directing ZnO Nanoparticle Morphology for Enhanced Environmental Applications
Main Article Content
Abstract
ZnO nanoparticles with adjustable morphology were synthesized using a variety of basic solutions. The formation of distinct intermediates during the synthesis process resulted in variations in the crystal structure, size, shape, and optical characteristics of the ZnO nanoparticles. In this study, ZnO nanoparticles were prepared via a simple precipitation method. The various ZnO intermediates formed with different basic solutions were identified using Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). After calcination at 600°C, the XRD patterns revealed that all the ZnO nanoparticles produced were hexagonal wurtzite. However, the morphology of each ZnO synthesized varied due to the different intermediate formations and hydroxide ion concentrations present in the various basic solutions. Additionally, the photocatalytic performances of the synthesized ZnO variants were evaluated by the photodegradation of various organic dyes under UV irradiation. The results indicated that ZnO nanoparticles prepared with NaHCO3 exhibited the highest photocatalytic efficiency.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abdulrahman, A. F., Ahmed, S. M., Hamad, S. M., Almessiere, M. A., Ahmed, N. M., & Sajadi, S. M. (2021). Effect of different pH values on growth solutions for the ZnO nanostructures. Chinese Journal of Physics, 71, 175-189. https://doi.org/10.1016/j.cjph.2021.02.013
Agarwal, S., Jangir, L. K., Rathore, K. S., Kumar, M., & Awasthi, K. (2019). Morphology-dependent structural and optical properties of ZnO nanostructures. Applied Physics. A, 125(8), Article 553. https://doi.org/10.1007/s00339-019-2852-x
Ahmad, I., Aslam, M., Jabeen, U., Zafar, M. N., Malghani, M. N. K., Alwadai, N., Alshammari, F. H., Almuslem, A. S., & Ullah, Z. (2022). ZnO and Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible light driven photocatalytic degradation of methylene blue. Inorganica Chimica Acta, 543, Article 121167. https://doi.org/10.1016/j.ica.2022.121167
Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A.-G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, Article 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., & Al-Douri, Y. (2013). XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International, 39(3), 2283-2292. https://doi.org/10.1016/j.ceramint.2012.08.075
Alanazi, H. S., Ahmad, N., & Alharthi, F. A. (2021). Synthesis of Gd/N co-doped ZnO for enhanced UV-vis and direct solar-light-driven photocatalytic degradation. RSC Advances, 11(17), 10194-10202. https://doi.org/10.1039/d0ra10698d
Aracena, A., Pino, J., & Jerez, O. (2020). Mechanism and kinetics of malachite dissolution in an NH4OH system. Metals, 10(6), Article 833. https://doi.org/10.3390/met10060833
Arellano-Cortaza, M., Ramírez-Morales, E., Pal, U., Pérez-Hernández, G., & Rojas-Blanco, L. (2021). pH dependent morphology and texture evolution of ZnO nanoparticles fabricated by microwave-assisted chemical synthesis and their photocatalytic dye degradation activities. Ceramics International, 47(19), 27469-27478. https://doi.org/10.1016/j.ceramint.2021.06.170
Ashraf, R., Riaz, S., Hussain, S. S., & Naseem, S. (2015). Effect of pH on properties of ZnO nanoparticles. Materials Today: Proceedings, 2(10), 5754-5759. https://doi.org/10.1016/j.matpr.2015.11.123
Auer, M., Wölfler, C., & Antrekowitsch, J. (2022). Influence of different carbon content on reduction of zinc oxide via metal bath. Applied Sciences, 12(2), Article 664. https://doi.org/10.3390/app12020664
Ayoub, I., Kumar, V., Abolhassani, R., Sehgal, R., Sharma, V., Sehgal, R., Swart, H. C., & Mishra, Y. K. (2022). Advances in ZnO: Manipulation of defects for enhancing their technological potentials. Nanotechnology Reviews, 11(1), 575-619. https://doi.org/10.1515/ntrev-2022-0035
Bao, H. V., Dat, N. M., Giang, N. T. H., Thinh, D. B., Tai, L. T., Trinh, D. N., Hai, N. D., Khoa, N. A. D., Huong, L. M., Nam, H. M., Phong, M. T., & Hieu, N. H. (2021). Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surfaces and Interfaces, 23, Article 100950. https://doi.org/10.1016/j.surfin.2021.100950
Baruah, S., & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 10(1), Article 013001. https://doi.org/10.1088/1468-6996/10/1/013001
Bashir, M., Majid, F., Bibi, I., Mushtaq, J., Ali, A., Farhat, L. B., Katubi, K. M., Alwadai, N., Khan, M. I., & Iqbal, M. (2022). Ultrasonic assisted synthesis of ZnO nanoflakes and photocatalytic activity evaluation for the degradation of methyl orange. Arabian Journal of Chemistry, 15(11), Article 104194. https://doi.org/10.1016/j.arabjc.2022.104194
Becker, J., Raghupathi, K. R., St. Pierre, J., Zhao, D., & Koodali, R. T. (2011). Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. The Journal of Physical Chemistry C, 115(28), 13844-13850. https://doi.org/10.1021/jp2038653
Benhebal, H., Chaib, M., Malengreaux, C., Lambert, S. D., Leonard, A., Crine, M., & Heinrichs, B. (2014). Visible-light photo-activity of alkali metal doped ZnO. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 249-253. https://doi.org/10.1016/j.jtice.2013.04.003
Bhattacharyya, S., & Gedanken, A. (2008). A template-free, sonochemical route to porous ZnO nano-disks. Microporous and Mesoporous Materials, 110(2-3), 553-559. https://doi.org/10.1016/j.micromeso.2007.06.053
Chandrappa, K. G., & Venkatesha, T. V. (2012). Electrochemical synthesis and photocatalytic property of Zinc oxide nanoparticles. Nano-Micro Letters, 4(1), 14-24. https://doi.org/10.1007/bf03353686
Chen, L.-L., Zhai, B.-G., & Huang, Y. M. (2020). Rendering visible-light photocatalytic activity to undoped ZnO via intrinsic defects engineering. Catalysts, 10(10), Article 1163. https://doi.org/10.3390/catal10101163
Chen, Y., Zhao, H., Liu, B., & Yang, H. (2015). Charge separation between wurtzite ZnO polar {0 0 1} surfaces and their enhanced photocatalytic activity. Applied Catalysis B: Environmental, 163, 189-197. https://doi.org/10.1016/j.apcatb.2014.07.044
Chithra, M. J., Sathya, M., & Pushpanathan, K. (2015). Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metallurgica Sinica (English Letters), 28(3), 394-404. https://doi.org/10.1007/s40195-015-0218-8
Claros, M., Setka, M., Jimenez, Y. P., & Vallejos, S. (2020). AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films. Nanomaterials, 10(3), Article 471. https://doi.org/10.3390/nano10030471
Das, S. C., Green, R. J., Podder, J., Regier, T. Z., Chang, G. S., & Moewes, A. (2013). Band gap tuning in ZnO through Ni doping via spray pyrolysis. The Journal of Physical Chemistry C, 117(24), 12745-12753. https://doi.org/10.1021/jp3126329
Dey, S., Das, S., & Kar, A. K. (2021). Role of precursor dependent nanostructures of ZnO on its optical and photocatalytic activity and influence of FRET between ZnO and methylene blue dye on photocatalysis. Materials Chemistry and Physics, 270, Article 124872. https://doi.org/10.1016/j.matchemphys.2021.124872
Dhir, R. (2020). Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles. Chemical Physics Letters, 746, Article 137302. https://doi.org/10.1016/j.cplett.2020.137302
Dodd, A. C., McKinley, A. J., Saunders, M., & Tsuzuki, T. (2006). Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. Journal of Nanoparticle Research, 8(1), 43-51. https://doi.org/10.1007/s11051-005-5131-z
Droepenu, E., Wee, B., Chin, S., Kok, K., & Asare, E. (2020). Synthesis and Characterization of Single Phase ZnO Nanostructures via Solvothermal Method: Influence of Alkaline Source. Biointerface Research in Applied Chemistry, 10, 5648-5655. https://doi.org/10.33263/briac103.648655
Eikeland, A. Z., Hölscher, J., & Christensen, M. (2021). Hydrothermal synthesis of SrFe12O19 nanoparticles: effect of the choice of base and base concentration. Journal of Physics D: Applied Physics, 54(13), Article 134004. https://doi.org/10.1088/1361-6463/abd2ec
Erdogan, N. H., Kutlu, T., Sedefoglu, N., & Kavak, H. (2021). Effect of Na doping on microstructures, optical and electrical properties of ZnO thin films grown by sol-gel method. Journal of Alloys and Compounds, 881, Article 160554. https://doi.org/10.1016/j.jallcom.2021.160554
Ferreira, S. H., Morais, M., Nunes, D., Oliveira, M. J., Rovisco, A., Pimentel, A., Águas, H., Fortunato, E., & Martins, R. (2021). High UV and sunlight photocatalytic performance of porous ZnO nanostructures synthesized by a facile and fast microwave hydrothermal method. Materials, 14(9). Article 2385. https://doi.org/10.3390/ma14092385
Flores, N. M., Pal, U., Galeazzi, R., & Sandoval, A. (2014). Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Advances, 4(77), 41099-41110. https://doi.org/10.1039/c4ra04522j
Galmiz, O., Stupavska, M., Wulff, H., Kersten, H., Brablec, A., & Cernak, M. (2015). Deposition of Zn-containing films using atmospheric pressure plasma jet. Open Chemistry, 13(1), 198-203. https://doi.org/10.1515/chem-2015-0020
Gnanaprakasam, A., Sivakumar, V. M., & Thirumarimurugan, M. (2015). Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: A review. Indian Journal of Materials Science, 2015, 1-16. https://doi.org/10.1155/2015/601827
He, L., Tong, Z., Wang, Z., Chen, M., Huang, N., & Zhang, W. (2018). Effects of calcination temperature and heating rate on the photocatalytic properties of ZnO prepared by pyrolysis. Journal of Colloid and Interface Science, 509, 448-456. https://doi.org/10.1016/j.jcis.2017.09.021
He, X., Yang, Y., Li, Y., Chen, J., Yang, S., Liu, R., & Xu, Z. (2022). Effects of structure and surface properties on the performance of ZnO towards photocatalytic degradation of methylene blue. Applied Surface Science, 599, Article 153898. https://doi.org/10.1016/j.apsusc.2022.153898
Hu, X.-L., Zhu, Y.-J., & Wang, S.W. (2004). Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics, 88(2-3), 421-426. https://doi.org/10.1016/j.matchemphys.2004.08.010
Ismail, A. A., El-Midany, A., Abdel-Aal, E. A., & El-Shall, H. (2005). Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Materials Letters, 59(14-15), 1924-1928. https://doi.org/10.1016/j.matlet.2005.02.027
Jiang, Y., Sun, Y., Liu, H., Zhu, F., & Yin, H. (2008). Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2–ZnO. Dyes and Pigments: An International Journal, 78(1), 77-83. https://doi.org/10.1016/j.dyepig.2007.10.009
Karpińska, J., & Kotowska, U. (2019). Removal of organic pollution in the water environment. Water, 11(10), Article 2017. https://doi.org/10.3390/w11102017
Klubnuan, S., Suwanboon, S., & Amornpitoksuk, P. (2016). Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Optical Materials, 53, 134-141. https://doi.org/10.1016/j.optmat.2016.01.045
Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833-2881. https://doi.org/10.3390/ma7042833
Kołodziejczak-Radzimska, A., Markiewicz, E., & Jesionowski, T. (2012). Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012, 1-9. https://doi.org/10.1155/2012/656353
Kumar, A., & Ahmad, I. (2020). Role of defects and microstructure on the electrical properties of solution-processed Al-doped ZnO transparent conducting films. Applied Physics. A. Materials Science & Processing, 126(8), Article 598. https://doi.org/10.1007/s00339-020-03767-0
Kumar, K. M., Mandal, B. K., Naidu, E. A., Sinha, M., Kumar, K. S., & Reddy, P. S. (2013). Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 171-174. https://doi.org/10.1016/j.saa.2012.11.025
Kumari, R., Sahai, A., & Goswami, N. (2015). Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Progress in Natural Science: Materials International, 25(4), 300-309. https://doi.org/10.1016/j.pnsc.2015.08.003
Kwoka, M., Kulis-Kapuscinska, A., Zappa, D., Comini, E., & Szuber, J. (2020). Novel insight on the local surface properties of ZnO nanowires. Nanotechnology, 31(46), Article 465705. https://doi.org/10.1088/1361-6528/ab8dec
Lamba, Randeep, Umar, A., Mehta, S. K., & Kansal, S. K. (2015). CeO2ZnO hexagonal nanodisks: Efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. Journal of Alloys and Compounds, 620, 67-73. https://doi.org/10.1016/j.jallcom.2014.09.101
Lamba, R., Umar, A., Mehta, S., & Kansal, S. K. (2017). Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures. Separation and Purification Technology, 183, 341-349
Lee, Y. C., Yang, C. S., Huang, H. J., Hu, S. Y., Lee, J. W., Cheng, C. F., Huang, C. C., Tsai, M. K., & Kuang, H. C. (2010). Structural and optical properties of ZnO nanopowder prepared by microwave-assisted synthesis. Journal of Luminescence, 130(10), 1756-1759. https://doi.org/10.1016/j.jlumin.2010.04.005
Lew, S., Sarofim, A. F., & Flytzani-Stephanopoulos, M. (1992). The reduction of zinc titanate and zinc oxide solids. Chemical Engineering Science, 47(6), 1421-1431. https://doi.org/10.1016/0009-2509(92)80287-m
Limón-Rocha, I., Guzmán-González, C. A., Anaya-Esparza, L. M., Romero-Toledo, R., Rico, J. L., González-Vargas, O. A., & Pérez-Larios, A. (2022). Effect of the precursor on the synthesis of ZnO and its photocatalytic activity. Inorganics, 10(2), Article 16. https://doi.org/10.3390/inorganics10020016
Lin, Z., Guo, F., Wang, C., Wang, X., Wang, K., & Qu, Y. (2014). Preparation and sensing properties of hierarchical 3D assembled porous ZnO from zinc hydroxide carbonate. RSC Advances, 4(10), Article 5122. https://doi.org/10.1039/c3ra45254a
Liu, N., Pidaparti, R., & Wang, X. (2018). Abnormal linear elasticity in polycrystalline phosphorene. Physical Chemistry Chemical Physics, 20(13), 8668–8675. https://doi.org/10.1039/c7cp08540k
Lucentini, I., Garcia, X., Vendrell, X., & Llorca, J. (2021). Review of the decomposition of ammonia to generate hydrogen. Industrial and Engineering Chemistry Research, 60(51), 18560-18611. https://doi.org/10.1021/acs.iecr.1c00843
Manzoor, U., Islam, M., Tabassam, L., & Rahman, S. U. (2009). Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method. Physica E: Low-Dimensional Systems & Nanostructures, 41(9), 1669-1672. https://doi.org/10.1016/j.physe.2009.05.016
Marinho, J. Z., de Paula, L. F., Longo, E., Patrocinio, A. O. T., & Lima, R. C. (2019). Effect of Gd3+ doping on structural and photocatalytic properties of ZnO obtained by facile microwave-hydrothermal method. SN Applied Sciences, 1(4), Article 359. https://doi.org/10.1007/s42452-019-0359-x
McCluskey, M. D., & Jokela, S. J. (2009). Defects in ZnO. Journal of Applied Physics, 106(7). Article 071101. https://doi.org/10.1063/1.3216464
McLaren, A., Valdes-Solis, T., Li, G., & Tsang, S. C. (2009). Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society, 131(35), 12540-12541. https://doi.org/10.1021/ja9052703
Modwi, A., Khezami, L., Taha, K. K., Bessadok J., A., & Mokraoui, S. (2019). Photo-degradation of a mixture of dyes using Barium doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 30(15), 14714-14725. https://doi.org/10.1007/s10854-019-01843-7
Moghri Moazzen, M. A., Borghei, S. M., & Taleshi, F. (2013). Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Applied Nanoscience, 3(4), 295-302. https://doi.org/10.1007/s13204-012-0147-z
Moussa, N. B., Lajnef, M., Jebari, N., Villebasse, C., Bayle, F., Chaste, J., Madouri, A., Chtourou, R., & Herth, E. (2021). Synthesis of ZnO sol-gel thin-films CMOS-Compatible. RSC Advances, 11(37), 22723-22733. https://doi.org/10.1039/d1ra02241e
Nageeb, M. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. Organic pollutants - monitoring, risk and treatment. InTech.
Nazarov, A. E., Eloev, G. G., & Ivanov, A. I. (2018). Effect of charge separation free energy gap on the rate constant of ultrafast charge recombination in ion pairs formed by intramolecular photoinduced electron transfer. Journal of Photochemistry and Photobiology A: Chemistry, 358, 207-214. https://doi.org/10.1016/j.jphotochem.2018.03.017
Nezamzadeh-Ejhieh, A., & Khorsandi, S. (2014). Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. Journal of Industrial and Engineering Chemistry, 20(3), 937-946. https://doi.org/10.1016/j.jiec.2013.06.026
Nguyen, T. L., & Saleh, M. A. (2020). Thermal degradation of azobenzene dyes. Results in Chemistry, 2, Article 100085. https://doi.org/10.1016/j.rechem.2020.100085
Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020
Pandey, Monica, Singh, M., Wasnik, K., Gupta, S., Patra, S., Gupta, P. S., Pareek, D., Chaitanya, N. S. N., Maity, S., Reddy, A. B. M., Tilak, R., & Paik, P. (2021). Targeted and enhanced antimicrobial inhibition of mesoporous ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 composite nanoparticles. ACS Omega, 6(47), 31615-31631. https://doi.org/10.1021/acsomega.1c04139
Pardeshi, S. K., & Patil, A. B. (2009). Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. Journal of Molecular Catalysis A: Chemical, 308(1-2), 32-40. https://doi.org/10.1016/j.molcata.2009.03.023
Park, S. Y., Kim, S., Yoo, J., Lim, K.-H., Lee, E., Kim, K., Kim, J., & Kim, Y. S. (2014). Aqueous zinc ammine complex for solution-processed ZnO semiconductors in thin film transistors. RSC Advances, 4(22), Article 11295. https://doi.org/10.1039/c3ra47437b
Qi, J., & Hu, X. (2020). The loss of ZnO as the support for metal catalysts by H2 reduction. Physical Chemistry Chemical Physics, 22(7), 3953-3958. https://doi.org/10.1039/c9cp06093f
Rabin, N. N., Morshed, J., Akhter, H., Islam, M. S., Hossain, M. A., Elias, M., Alam, M. M., Karim, M. R., Hasnat, M. A., Uddin, M. N., & Siddiquey, I. A. (2016). Surface modification of the ZnO nanoparticles with γ-aminopropyltriethoxysilane and study of their photocatalytic activity, optical properties and antibacterial activities. International Journal of Chemical Reactor Engineering, 14(3), 785-794. https://doi.org/10.1515/ijcre-2015-0141
Rahman, M. R., Uddin, M. N., Ashrafy, T., Washif, M., Uddin, M. R., Hoq, M., & Jalal, A. H. (2022). Tuning of optical band gap: Genesis of thickness regulated Al doped ZnO nano-crystalline thin films formulated by sol–gel spin coating approach. Transactions on Electrical and Electronic Materials, 23(3), 205-218. https://doi.org/10.1007/s42341-021-00341-0
Raj, K. P., & Sadayandi, K. (2016). Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Physica B: Condensed Matter, 487, 1-7. https://doi.org/10.1016/j.physb.2016.01.020
Rajamanickam, D., & Shanthi, M. (2016). Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. Arabian Journal of Chemistry, 9, S1858-S1868. https://doi.org/10.1016/j.arabjc.2012.05.006
Ranjbari, A., Demeestere, K., Kim, K.-H., & Heynderickx, P. M. (2023). Oxygen vacancy modification of commercial ZnO by hydrogen reduction for the removal of thiabendazole: Characterization and kinetic study. Applied Catalysis B: Environmental, 324, Article 122265. https://doi.org/10.1016/j.apcatb.2022.122265
Ranjbari, A., Kim, J., Yu, J., Kim, J., Park, M., Kim, N., Demeestere, K., & Heynderickx, P. M. (2024). Effect of oxygen vacancy modification of ZnO on photocatalytic degradation of methyl orange: A kinetic study. Catalysis Today, 427, Article 114413. https://doi.org/10.1016/j.cattod.2023.114413
Razavi-Khosroshahi, H., Edalati, K., Wu, J., Nakashima, Y., Arita, M., Ikoma, Y., Sadakiyo, M., Inagaki, Y., Staykov, A., Yamauchi, M., Horita, Z., & Fuji, M. (2017). High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(38), 20298-20303. https://doi.org/10.1039/c7ta05262f
Reli, M., Edelmannová, M., Šihor, M., Praus, P., Svoboda, L., Mamulová, K. K., Otoupalíková, H., Čapek, L., Hospodková, A., Obalová, L., & Kočí, K. (2015). Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods. International Journal of Hydrogen Energy, 40(27), 8530-8538. https://doi.org/10.1016/j.ijhydene.2015.05.004
Remor, P. V., Bastos, J. A., Alino, J. H. L., Frare, L. M., Kaparaju, P., & Edwiges, T. (2023). Optimization of chemical solution concentration and exposure time in the alkaline pretreatment applied to sugarcane bagasse for methane production. Environmental Technology, 44(19), 2843-2855. https://doi.org/10.1080/09593330.2022.2046645
Sahai, A., & Goswami, N. (2014). Probing the dominance of interstitial oxygen defects in ZnO nanoparticles through structural and optical characterizations. Ceramics International, 40(9), 14569-14578. https://doi.org/10.1016/j.ceramint.2014.06.041
Sahu, J., Kumar, S., Vats, V. S., Alvi, P. A., Dalela, B., Phase, D. M., Gupta, M., Kumar, S., & Dalela, S. (2022). Role of defects and oxygen vacancy on structural, optical and electronic structure properties in Sm-substituted ZnO nanomaterials. Journal of Materials Science: Materials in Electronics, 33(27), 21546-21568. https://doi.org/10.1007/s10854-022-08945-9
Sansenya, T., Masri, N., Chankhanittha, T., Senasu, T., Piriyanon, J., Mukdasai, S., & Nanan, S. (2022). Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. The Journal of Physics and Chemistry of Solids, 160, Article 110353. https://doi.org/10.1016/j.jpcs.2021.110353
Sasaoka, E., Hirano, S., Kasaoka, S., & Sakata, Y. (1994). Stability of zinc oxide high-temperature desulfurization sorbents for reduction. Energy and Fuels, 8(3), 763-769. https://doi.org/10.1021/ef00045a033
Selvaraj, S., Mohan, M. K., Navaneethan, M., Ponnusamy, S., & Muthamizhchelvan, C. (2019). Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Materials Science in Semiconductor Processing, 103, Article 104622. https://doi.org/10.1016/j.mssp.2019.104622
Shamsipur, M., Pourmortazavi, S. M., Hajimirsadeghi, S. S., Zahedi, M. M., & Rahimi-Nasrabadi, M. (2013). Facile synthesis of zinc carbonate and zinc oxide nanoparticles via direct carbonation and thermal decomposition. Ceramics International, 39(1), 819-827. https://doi.org/10.1016/j.ceramint.2012.07.003
Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028-3035. https://doi.org/10.1016/j.matpr.2020.10.238
Shen, G.-C., Fujita, S.-I., Matsumoto, S., & Takezawa, N. (1997). Steam reforming of methanol on binary CuZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity. Journal of Molecular Catalysis. A, Chemical, 124(2-3), 123-136. https://doi.org/10.1016/s1381-1169(97)00078-2
Shi, J., Zhang, J., Yang, L., Qu, M., Qi, D.-C., & Zhang, K. H. L. (2021). Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices. Advanced Materials, 33(50), Article e2006230. https://doi.org/10.1002/adma.202006230
Singh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science, 12(4), 470-475. https://doi.org/10.1080/16583655.2018.1473946
Sudha, M., & Rajarajan, M. (2013). Deactivation of photocatalytically active ZnO nanoparticle by surface capping with poly vinyl pyrrolidone. IOSR Journal of Applied Chemistry, 3(3), 45-53. https://doi.org/10.9790/5736-0334553
Sulciute, A., Nishimura, K., Gilshtein, E., Cesano, F., Viscardi, G., Nasibulin, A. G., Ohno, Y., & Rackauskas, S. (2021). ZnO nanostructures application in electrochemistry: Influence of morphology. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 125(2), 1472-1482. https://doi.org/10.1021/acs.jpcc.0c08459
Sun, B., Yang, X., Zhao, D., & Zhang, L. (2018). First-principles study of adsorption mechanism of NH3 on different ZnO surfaces on organics photocatalytic degradation purpose. Computational Materials Science, 141, 133-140. https://doi.org/10.1016/j.commatsci.2017.09.013
Thongam, D. D., Gupta, J., & Sahu, N. K. (2019). Effect of induced defects on the properties of ZnO nanocrystals: surfactant role and spectroscopic analysis. SN Applied Sciences, 1(9), Article 1030. https://doi.org/10.1007/s42452-019-1058-3
Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., & Zhang, J. (2009). Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chemical Engineering Journal, 151(1-3), 220-227. https://doi.org/10.1016/j.cej.2009.02.030
Tijani, J. O., Fatoba, O. O., Madzivire, G., & Petrik, L. F. (2014). A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water, Air, and Soil Pollution, 225(9), Article 2102. https://doi.org/10.1007/s11270-014-2102-y
Tinio, J. V. G., Simfroso, K. T., Peguit, A. D. M. V., & Candidato, R. T. (2015). Influence of OH−ion concentration on the surface morphology of ZnO-SiO2 nanostructure. Journal of Nanotechnology, 2015, 1-7. https://doi.org/10.1155/2015/686021
Uribe-López, M. C., Hidalgo-López, M. C., López-González, R., Frías-Márquez, D. M., Núñez-Nogueira, G., Hernández-Castillo, D., & Alvarez-Lemus, M. A. (2021). Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 404, Article 112866. https://doi.org/10.1016/j.jphotochem.2020.112866
Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H.S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640-1648. https://doi.org/10.1016/j.materresbull.2006.11.035
Wahab, R., Ansari, S. G., Kim, Y. S., Song, M., & Shin, H.-S. (2009). The role of pH variation on the growth of zinc oxide nanostructures. Applied Surface Science, 255(9), 4891-4896. https://doi.org/10.1016/j.apsusc.2008.12.037
Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., & Dai, Y. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces, 4(8), 4024-4030. https://doi.org/10.1021/am300835p
Wang, V., Ma, D., Jia, W., & Ji, W. (2012). Structural and electronic properties of hexagonal ZnO: A hybrid functional study. Solid State Communications, 152(22), 2045-2048. https://doi.org/10.1016/j.ssc.2012.08.024
Weldegebrieal, G. K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120, Article 108140. https://doi.org/10.1016/j.inoche.2020.108140
Wittawat, R., Rittipun, R., Jarasfah, M., & Nattaporn, B. (2020). Synthesis of ZnO/TiO2 spherical particles for blue light screening by ultrasonic spray pyrolysis. Materials Today. Communications, 24, Article 101126. https://doi.org/10.1016/j.mtcomm.2020.101126
Wu, Y. L., Tok, A. I. Y., Boey, F. Y. C., Zeng, X. T., & Zhang, X. H. (2007). Surface modification of ZnO nanocrystals. Applied Surface Science, 253(12), 5473-5479. https://doi.org/10.1016/j.apsusc.2006.12.091
Xie, H., Li, N., Chen, X., Jiang, J., & Zhao, X. (2020). Surface oxygen vacancies promoted photodegradation of benzene on TiO2 film. Applied Surface Science, 511, Article 145597. https://doi.org/10.1016/j.apsusc.2020.145597
Xu, J., Pan, Q., Shun, Y., & Tian, Z. (2000). Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators. B, Chemical, 66(1-3), 277-279. https://doi.org/10.1016/s0925-4005(00)00381-6
Xu, L., Li, X., & Yuan, J. (2008). Effect of K-doping on structural and optical properties of ZnO thin films. Superlattices and Microstructures, 44(3), 276-281. https://doi.org/10.1016/j.spmi.2008.04.004
Yang, X., Tian, J., Guo, Y., Teng, M., Liu, H., Li, T., Lv, P., & Wang, X. (2021). ZnO nano-rod arrays synthesized with exposed {0001} facets and the investigation of photocatalytic activity. Crystals, 11(5), Article 522. https://doi.org/10.3390/cryst11050522
Yang, J., Wang, J., Li, X., Lang, J., Liu, F., Yang, L., Zhai, H., Gao, M., & Zhao, X. (2012). Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties. Journal of Alloys and Compounds, 528, 28-33. https://doi.org/10.1016/j.jallcom.2012.02.162
Zegadi, C., Abdelkebir, K., Chaumont, D., Adnane, M., & Hamzaoui, S. (2014). Influence of Sn low doping on the morphological, structural and optical properties of ZnO films deposited by sol gel dip-coating. Advances in Materials Physics and Chemistry, 4(5), 93-104. https://doi.org/10.4236/ampc.2014.45012
Zhang, M., Averseng, F., Haque, F., Borghetti, P., Krafft, J.-M., Baptiste, B., Costentin, G., & Stankic, S. (2019). Defect-related multicolour emissions in ZnO smoke: from violet, over green to yellow. Nanoscale, 11(11), 5102-5115. https://doi.org/10.1039/c8nr09998g
Zhang, Q., Xu, M., You, B., Zhang, Q., Yuan, H., & Ostrikov, K. (2018). Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Applied Sciences, 8(3), Article 353. https://doi.org/10.3390/app8030353
Zou, X., Ke, J., Hao, J., Yan, X., & Tian, Y. (2022). A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance. Physica. B, Condensed Matter, 624, Article 413395. https://doi.org/10.1016/j.physb.2021.413395