Selection of Stable Rice Genotypes through WAASB and MTSI Indices

Main Article Content

Md. Arafat Hossain
Md. Abdullah Al Mamun
Shah Mohammad Hisam Al Rabbi
Sanjida Akter
Ripon Kumar Roy

Abstract

The cultivation of high-yielding and stable rice varieties is essential for ensuring food security in Bangladesh. To achieve this, breeders often conduct multilocational trials to evaluate genotype performance across diverse environments. During the Aman rice season, six rice genotypes and three check varieties across nine locations were investigated in this study using a randomized complete block design. The primary aim was to identify superior genotypes using the Multi-Trait Stability Index (MTSI). Both mixed and fixed effect models were utilized in this study to achieve accurate and reliable results. The mean performance and stability (MPS) were effectively represented by the WAASBY (Weighted Average of Absolute Scores + Yield) biplot, which served as the superiority index in the analysis. The Likelihood Ratio Test (LRT) showed that genotype by environment interaction (GEI) and genotype had a substantial impact. Key findings showed that genotype-by-environment interaction (GEI) significantly influenced grain yield and related traits. While most traits positively correlated with yield, Thousand Grain Weight (TGW) did not. The WAASBY biplot effectively assessed performance and stability. Some genotypes, such as BRRI dhan33, BRRI dhan39, were stable but low yielding. Conversely, BRRI dhan49 and BR9786-BC2-119-1-1 were highly productive but less stable. Notably, BR9786-BC2-132-1-3 delivered the highest yield but exhibited moderate stability, making it promising yet sensitive to environmental changes. This study highlights BR9786-BC2-132-1-3 as a potential candidate for further evaluation due to its productivity, with ongoing research needed to improve its adaptability and resilience across diverse conditions.

Article Details

Section
Original Research Articles

References

Akter, A., & Hassan, M. J. (2014). AMMI biplot analysis for stability of grain yield in hybrid rice (Oryza sativa L.). Rice Research: Open Access, 2(2), 10-13. https://doi.org/10.4172/jrr.1000126

Alam, Z., Akter, S., Khan, M. A., Amin, M. N., Karim, M. R., Rahman, M. H. S., Rashid, M. H., Rahman, M. M., Mokarroma, N., Sabuz, A. A., Alam, M. J., Roy, T., Rahaman, E. H. M. S., Ali, M. A., Chanda, D., & Sarker, U. (2024). Multivariate analysis of yield and quality traits in sweet potato genotypes (Ipomoea batatas L.). Scientia Horticulturae, 328, Article 112901. https://doi.org/10.1016/j.scienta.2024.112901

Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575, 109-118. https://doi.org/10.1038/s41586-019-1679-0

Balakrishnan, D., Subrahmanyam, D., Badri, J., Raju, A., Rao, Y. V., Beerelli, K., Mesapogu, S., Surapaneni, M., Ponnuswamy, R., Padmavathi, G., Babu, V., & Neelamraju, S. (2016). Genotype × environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/Oryza nivara. Frontiers in Plant Science, 7, Article 1530. https://doi.org/10.3389/fpls.2016.01530

Bangladesh Rice Knowledge Bank. (2023). Rice insect and pest control management. https://knowledgebank-brri.org/rice-insect-and-pest-control-management

BMD. (2023). Climate data. Bangladesh Meteorological Department. https://dataportal. bmd.gov.bd/

BRRI. (2023). Rice varieties. Bangladesh Rice Research Institute. http://www.brri.gov.bd

Becker, H. C., & Léon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101(1), 1-23. https://doi.org/10.1111/j.1439-0523.1988.tb00261.x

Bocianowski, J., Niemann, J., & Nowosad, K. (2019). Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using the additive main effects and multiplicative interaction model. Euphytica, 215(1), Article 7. https://doi.org/10.1007/s10681-018-2328-7

Chandel, G., Banerjee, S., See, S., Meena, R., Sharma, D. J., & Verulkar, S. B. (2010). Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Science, 17(3), 213-227. https://doi.org/10.1016/S1672-6308(09)60020-2

Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., Babu, R. S., Nair, S. K., Das, B., Govaerts, B., Vinayan, M. T., Rashid, Z., Noor, J. J., Devi, P., Vicente, F. S., & Prasanna, B. M. (2012). Maize production in a changing climate: Impacts, adaptation, and mitigation strategies. Advances in Agronomy, 114, 1-58.

Das, A., Parihar, A. K., Saxena, D. R., Singh, D., Singha, K. D., Kushwaha, K. P., Chand, R., Bal, R. S., Chandra, S., & Gupta, S. (2019). Deciphering genotype-by- environment interaction for targeting test environments and rust resistant genotypes in field pea (Pisum sativum L.). Frontiers in Plant Science, 10, Article 825. https://doi.org/10.3389/fpls.2019.00825

Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36-40. https://doi.org/10.2135/cropsci1966.0011183x000600010011x

Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., & Carlsson, A. S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS ONE, 16(10), Article e0258211. https://doi.org/10.1371/journal.pone.0258211

Fischer, T., Byerlee, D. R., & Edmeades, G. O. (2014). Crop yields and global food security: will yield increase continue to feed the world? (2nd ed.). ACIAR.

Food and Agriculture Organization. (2022). Food and agriculture organization statistics database. FAOSTAT. http://www.fao.org/faostat/en/#data/qc

Gage, J. L., Jarquín, D., Romay, C., Lorenz, A., Buckler, E. S., Kaeppler, S., Alkhalifah, N., Bohn, M., Campbell, D. A., Edwards, J., Ertl, D., Flint-Garcia, S., Gardiner, J., Good, B., Hirsch, C. N., Holland, J., Hooker, D. C., Knoll, J., Kolkman, J., Kruger, G., Lauter, N., … de León, N. (2017). The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 8, Article 1348. https://doi.org/10.1038/s41467-017-01450-2

Gauch, H., Jr. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers.

Hall, A. J., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18-33. https://doi.org/10.1016/j.fcr.2012.05.014

Hasan, N., Rafii, M. Y., Harun, A. R., Ali, N. S., Mazlan, N., & Abdullah, S. (2022). Genetic analysis of yield and yield contributing traits in rice (Oryza sativa L.) BC2F3 population derived from MR264 × PS2. Biotechnology and Biotechnological Equipment, 36(1), 184-192. https://doi.org/10.1080/13102818.2022.2060760

Hickey, L.T., N. Hafeez, A., Robinson, H., Jackson, S.A., Leal‐Bertioli, S.C., Tester, M.A., Gao, C., Godwin, I.D., Hayes, B.J., & Wulff, B.B. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37(7), 744-754. https://doi.org/10.1038/s41587-019-0152-9

Huang, X., Jang, S., Kim, B., Piao, Z., Redona, E., & Koh, H.-J. (2021). Evaluating genotype × environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical and tropical environments. Agriculture, 11(6), Article 558. https://doi.org/10.3390/agriculture11060558

Kabir, M. M., Naher, U. A., Panhwar, Q. A., Shamshuddin, J., & Khan, F. H. (2014). Effect of transplanting dates on growth and yield of inbred and hybrid rice varieties grown during rainfed season in Bangladesh. Philippine Agricultural Scientist, 97, 347-354.

Kabir, M.S., Salam, M.O., Islam, A., Sarkar, M., Mamun, M.S., Rahman, M., Nessa, B., Kabir, M.J., Shozib, H., Hossain, M.B., Chowdhury, A.A., Nasim, M., Iftekharuddaula, K.M., Hossain, Bhuiyan, M., Karmakar, B., Rahman, Haque, M., Khatun, M.M., Ali, M.P., Rabbi, S.M., Biswas, P., Rashid, E., & Rahman, N. (2021). Doubling rice productivity in Bangladesh: A way to achieving SDG 2 and moving forward. Bangladesh Rice Journal, 24(2), 1-47. https://doi.org/10.3329/brj.v24i2.53447

Kang, M. S. (1998). Genotype-by-environment interaction for crop development. Advances in Agronomy, 62, 199-252.

Li, R., Li, M., Ashraf, U., Liu, S., & Zhang, J. (2019). Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Frontiers in Plant Science, 10, Article 543.https://doi.org/10.3389/fpls.2019.00543

Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, Article 44. https://doi.org/10.3389/fphys.2013.00044

Mann, P. K., & Dhillon, B. S. (2021). Effect of date of transplanting on growth and productivity of rice (Oryza sativa L.) cultivars. Agricultural Reviews.

Nishad, A., Mishra, A., Chaudhuri, R., Aryan, R., & Purusharth, K. (2019). Effect of temperature on growth and yield of rice (Oryza sativa L.) cultivars. International Journal of Chemical Studies, 19, 1381-1383.

Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. https://doi.org/10.1111/2041-210X.13384

Olivoto, T., Lúcio, A. D. C., da Silva, J. A. G., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019a). Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960. https://doi.org/10.2134/agronj2019.03.0220

Olivoto, T., Lúcio, A. D. C., da Silva, J. A. G., Sari, B. G., & Diel, M. I. (2019b). Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal, 111(6), 2961-2969. https://doi.org/10.2134/agronj2019.03.0221

Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J., & Khush, G. S. (1999). Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 39(6), 1552-1559. https://doi.org/10.2135/cropsci1999.3961552x

Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., Mehrvar, M. R., Asadi, A., & Amini, A. (2021). Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre, 45, Article 117. https://doi.org/10.1186/s42269-021-00576-0

Rabbi, S. M. H., Biswas, P., Rashid, E. S. M., Iftekharuddaula, K. M., Rahman, N. M. F., Rahman, M. S., Sarkar, M. A. R., Mamun, M. A. A., Salam, M. U., & Kabir, M. S. (2021). Increasing rice yield through targeting genetic potentials by rice types. Bangladesh Rice Journal, 24(2), 67-82. https://doi.org/10.3329/brj.v24i2.53449

Rahayu, S. (2020). Yield stability analysis of rice mutant lines using AMMI method. Journal of Physics: Conference Series, 1436, Article 012019. https://doi.org/10.1088/1742-6596/1436/1/012019

Rerkasem, B., Jumrus, S., Yimyam, N., & Prom-u-Thai, C. (2015). Variation of grain nutritional quality among Thai purple rice genotypes grown at two different altitudes. Science Asia, 41(6), 377-385. https://doi.org/10.2306/scienceasia1513-1874.2015.41.377

Russinga, A. M. (2020). Correlation Studies on Yield and Yield Contributing Traits in Rice (Oryza sativa L.). Indian Journal of Pure and Applied Biosciences, 8(5), 531-538. https://doi.org/10.18782/2582-2845.8334

Sadimantara, G. R., Kadidaa, B., Suaib, Safuan, L. O., & Muhidin. (2018). Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi. IOP Conference Series: Earth and Environmental Science, 122(1), Article 012094. https://doi.org/10.1088/1755-1315/122/1/012094

Sakamoto, T., & Matsuoka, M. (2008). Identifying and exploiting grain yield genes in rice. Current Opinion in Plant Biology, 11(2), 209-214. https://doi.org/10.1016/j.pbi.2008.01.009

Santos, F., & Marza, F. (2020). Selection of forage oat genotypes through GGE Biplot and BLUP. BioRxiv. https://doi.org/10.1101/2020.03.10.986422

Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., & Abbasian, A. (2017). Evaluation of genotype × environment interaction in rice based on AMMI model in Iran. Rice Science, 24(3), 173-180. https://doi.org/10.1016/j.rsci.2017.02.001

Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi, A. (2020). Stability of some rice genotypes based on WAASB and MTSI indices. Iranian Journal of Genetics and Plant Breeding, 9(2), 1-11. https://doi.org/10.30479/ijgpb.2021.14432.1283

Shrestha, J., Subedi, S., Kushwaha, U. K. S., & Maharjan, B. (2021). Evaluation of rice genotypes for growth, yield, and yield components. Journal of Agriculture and Natural Resources, 4, 339-346. https://doi.org/10.3126/janr.v4i2.33967

Suwarto, & Nasrullah. (2011). Genotype × environment interaction for iron concentration of rice in Central Java of Indonesia. Rice Science, 18(1), 75-78. https://doi.org/10.1016/S1672-6308(11)60011-5

Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press.

Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605. https://doi.org/10.2135/cropsci2000.403597x

Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47(2), 643-655. https://doi.org/10.2135/cropsci2006.06.0374

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114, 9326-9331.

Zuffo, A. M., Steiner, F., Aguilera, J. G., Teodoro, P. E., Teodoro, L. P. R., & Busch, A. (2020). Multi-trait stability index: A tool for simultaneous selection of soybean genotypes in drought and saline stress. Journal of Agronomy and Crop Science, 206(6), 815-822. https://doi.org/10.1111/jac.12409