Improvement of the Electrical Properties of ZnO Nanomaterials with Fe by Co-precipitation Method

Main Article Content

Pitchaporn Kingpho
Buppachat Toboonsung

Abstract

Fe-doped ZnO nanomaterials were prepared by the co-precipitation method. The experiments used a solution of 0.5 M for ZnCl2, doped with FeSO4 in proportions of 0-100 wt.%, followed by the addition of 1 M for NaOH solution until a pH of 12 was reached. Next, the precipitated substances were calcinated at 550ºC for 3 h in air. SEM image analysis showed that the nanoparticles formed in the condition of pure ZnO and Fe2O3 whereas rod-shaped formed with Fe doping. Nanoparticles of ZnO transformed into nanorods when doped with Fe. EDS analysis detected Fe under the conditions of 3 and 5 wt.% doping. XRD patterns of ZnO and all doping of Fe in ZnO nanostructures were corresponded to a hexagonal wurtzite structure of ZnO which showed crystallite size in the range of 25-29 nm. The electrical properties of Fe-doped ZnO nanostructures were identified by the spectroscope measurements of fluorescence and ultraviolet-visible absorption, and the electrical conductivity was calculated. It was found that Fe doping at 3 wt.% produced the lowest energy band gap (based on spectroscopy results) and this condition was associated with the highest electrical conductivity of 0.21 x 10-3 (Ω.cm)-1 which was calculated from the measurement of electrical resistance by two probes. Therefore, Fe doping can improve the electrical properties of ZnO nanostructures.

Article Details

How to Cite
Kingpho, P., & Toboonsung, B. (2024). Improvement of the Electrical Properties of ZnO Nanomaterials with Fe by Co-precipitation Method. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 25(3), e0263485. https://doi.org/10.55003/cast.2024.263485
Section
Original Research Articles

References

Ahmad, F., & Maqsood, A. (2022). Influence of nickel dopant on impedance, dielectric, and optical properties of ZnO nanoparticles at low temperatures. Journal of Materials Science: Materials in Electronics, 33, 12674-12700.

Alavi, M., Karimi, N., & Valadbeigi, T. (2019). Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis Lichen Aqueous extract against multi-drug-resistant bacteria. ACS Biomaterials Science & Engineering, 5(9), 4228-4243. https://doi.org/10.1021/acsbiomaterials.9b00274

Al-Gaashani, R., Radiman, S., Tabet, N., & Daud, A. R. (2014). Rapid synthesis and optical properties of hematite (α-Fe2O3) nanostructures using a simple thermal decomposition method. Journal of Alloys and Compounds, 550, 395-401. https://doi.org/10.1016/j.jallcom.2012.10.150

Alsmadi, A. K. M., Salameh, B., & Shatnawi, M. (2020). Influence of oxygen defects and their evolution on the ferromagnetic ordering and band gap of Mn-doped ZnO films. The Journal of Physical Chemistry C, 124(29), 16116-16126. https://doi.org/10.1021/acs.jpcc.0c04049

Asok, A., Gandhia, M. N., & Kulkarni, A. R. (2012). Enhanced visible photoluminescence in ZnO quantum dots by promotion of oxygen vacancy formation. Nanoscale, 4(16), 4943-4946. https://doi.org/10.1039/C2NR31044A

Baek, S., Song, J., & Lim, S. (2007). Improvement of the optical properties of ZnO nanorods by Fe doping. Physica B: Condensed Matter, 399(2), 101-104. https://doi.org/10.1016/j.physb.2007.05.030

Cheng, W., & Ma, X. (2009). Structural, optical and magnetic properties of Fe-doped ZnO. Journal of Physics: Conference Series, 152, Article 012039. https://doi.org/10.1088/1742-6596/152/1/012039

Divya, J., Pramothkumar, A., Gnanamuthu, S. J., Victoria, D. C. B., & Prabakar, P. C. J. (2020). Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Physica B: Condensed Matter, 588, Article 412169. https://doi.org/10.1016/j.physb.2020.412169

Gandhi, V., Ganesan, R., Syedahamed, H. H. A., & Thaiyan, M. (2014). Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. The Journal of Physical Chemistry C, 118(18), 9715-9725. https://doi.org/10.1021/jp411848t

Gaur, L. K., Gairola, P., Gairola, S. P., Mathpal, M. C., Kumar, P., Kumar, S., Kushavah, D., Agrahari, V., Aragon, F. F. H., Soler, M. A. G., & Swart, H. C. (2021). Cobalt doping induced shape transformation and its effect on luminescence in zinc oxide rod-like nanostructures. Journal of Alloys and Compounds, 868, Article 159189. https://doi.org/10.1016/j.jallcom.2021.159189

Khan, K., Shah, M. Z. U, Aziz, U., Hayat, K., Sajjad, M., Ahmad, I., Ahmad, S. A., Shah, S. K., & Shah, A. (2022a). Development of 1.6 V hybrid supercapacitor based on ZnO nanorods/MnO2 nanowires for next-generation electrochemical energy storage. Journal of Electroanalytical Chemistry, 922, Article 116753. https://doi.org/10.1016/j.jelechem.2022.116753

Khan, M. A., Nayan, N., Ahmad, M. K., Fhong, S. C., Ali, M. S. M., Mustafa, M. K., & Tahir, M. (2022b). Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices. Optical Materials, 117, Article 111132. https://doi.org/10.1016/j.optmat.2021.111132

Kumar, G. M., Ilanchezhiyan, P., Kawakita, J., Park, J., & Jayavel, R. (2013). Suppression of defect level emissions in low temperature fabricated one-dimensional Mn doped ZnO nanorods. Journal of Materials Science: Materials in Electronics, 24, 2989-2994. https://doi.org/10.1007/s10854-013-1201-7

Mahajan, P., Singh, A., & Arya, S. (2022). Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds, 814, Article 152292. https://doi.org/10.1016/j.jallcom.2019.152292

Mayandi, J., Madathil, R. K., Abinaya, C., Bethke, K., Venkatachalapathy, V., Rademann, K., Norby, T., & Finstad, T. G. (2021). Al-doped ZnO prepared by co-precipitation method and its thermoelectric characteristics. Materials Letters, 288, Article 129352. https://doi.org/10.1016/j.matlet.2021.129352

Meybodi, S. M., Hosseini, S. A., Rezaee, M., Sadrnezhaad, S. K., & Mohammadyani, D. (2012). Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrasonics Sonochemistry, 19(4), 841-845, https://doi.org/10.1016/j.ultsonch.2011.11.017

Mohammadi, M., Sabbaghi, S., Binazadeh, M., Ghaedi, S., & Rajabi, H. (2023). Type-1 α-Fe2O3/TiO2 photocatalytic degradation of tetracycline from wastewater using CCD-Based RSM optimization. Chemosphere, 336, Article 139311. https://doi.org/10.1016/j.chemosphere.2023.139311

Montes, J. M., Cuevas, F. G., & Cintas, J. (2011). Electrical conductivity of metal powder aggregates and sintered compacts. Granular Matter, 13, 439-446. https://doi.org/10.1007/s10035-010-0246-z

Montes, J. M., Cuevas, F. G., Cintas, J., & Gallardo, J. M. (2016). Electrical conductivity of metal powder aggregates and sintered compacts. Journal of Materials Science, 51, 822-835. https://doi.org/10.1007/s10853-015-9405-2

Nadeem, M. S., Munawar, T., Mukhtar, F., Rahman, M. N., Riaz, M., & Iqbal, F. (2021). Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceramics International, 47(8), 11109-11121. https://doi.org/10.1016/j.ceramint.2020.12.234

Nakate, U. T., Patil, P., Na, S.-N., Yu, Y. T., Suh, E.-K., & Hahn, Y.-B. (2021). Fabrication and enhanced carbon monoxide gas sensing performance of p-CuO/n-TiO2 heterojunction device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, Article 125962. https://doi.org/10.1016/j.colsurfa.2020.125962

Niranjan, K., Dutta, S., Varghese, S., Ray, A. K., & Barshilia, H. C. (2017). Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Applied Physics A, 123, Article 250. https://doi.org/10.1007/s00339-017-0890-9

Pramothkumar, A., Senthilkumar, N., Jenila, R. M., Durairaj, M., Girisun, S. T. C., & Potheher, I. V. (2021). A study on the electrical, magnetic and optical limiting behaviour of Pure and Cd-Fe co-doped CuO NPs. Journal of Alloys and Compounds, 878, Article 160332. https://doi.org/10.1016/j.jallcom.2021.160332

Roguai, S., & Djelloul, A. (2021). Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method. Solid State Communications, 334-335, Article 114362. https://doi.org/10.1016/j.ssc.2021.114362

Saadi, H., Rhouma, F. I. H., Benzarti, Z., Bougrioua, Z., Guermazi, S., & Khirouni, K. (2020). Electrical conductivity improvement of Fe doped ZnO nanopowders. Materials Research Bulletin, 129. https://doi.org/10.1016/j.materresbull.2020.110884

Sajjad, M., Ullah, I., Khan, M. I., Khan, J., Khan, M. Y., & Qureshi, M. T. (2018). Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results in Physics, 9, 1301-1309. https://doi.org/10.1016/j.rinp.2018.04.010

Salem, M., Akir, S., Ghrib, T., Daoudi, K., & Gaidi, M. (2016). Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. Journal of Alloys and Compounds, 685, 107-113. https://doi.org/10.1016/j.jallcom.2016.05.254

Samanta, A., Goswami, M. N., & Mahapatra, P. K. (2018). Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature. Journal of Alloys and Compounds, 730, 399-407. https://doi.org/10.1016/j.jallcom.2017.09.334

Sangchay, W., & Ubolchollakhat, K. (2016). Photocatalytic and antibacterial activities of ZnO powders prepared via a sol-gel method. KKU Engineering Journal, 43(1), 21-25.

Seid, E. T., & Dejene, F. B. (2019). Controlled synthesis of In-doped ZnO: the effect of indium doping concentration. Journal of Materials Science: Materials in Electronics, 30, 11833-11842. https://doi.org/10.1007/s10854-019-01557-w

Selvanayaki, R., Rameshbabu, M., Muthupandi, S., Razia, M., Sasi, F. S., Ravichandran, K., & Prabha, K. (2022). Structural, optical and electrical conductivity studies of pure and Fe doped ZincOxide (ZnO) nanoparticles. Materials Today: Proceedings, 49, 2628-2631. https://doi.org/10.1016/j.matpr.2021.08.045

Sharma, D., & Jha, R. (2017). Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceramics International, 43(11), 8488-8496. https://doi.org/10.1016/j.ceramint.2017.03.201

Singh, J., & Singh, R. C. (2021). Tuning of structural, optical, dielectric and transport properties of Fe-doped ZnO:V system. Materials Science in Semiconductor Processing, 121. https://doi.org/10.1016/j.mssp.2020.105305

Sugumaran, S., Ahmad, M. N. B., Jamlos, M. F., Bellan, C. S., Pattiyappan, S., Rajamani, R., & Sivaraman, P. K. (2021). Transparent with wide band gap In-ZnO nano thin film: Preparation and characterizations. Optical Materials, 49, 348-356. https://doi.org/10.1016/j.optmat.2015.10.003

Tahir, M., Fakhar-e-Alam, M., Atif, M., Mustafa, G., & Ali, Z. (2023). Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method. Journal of King Saud University - Science, 35(5), Article 102695. https://doi.org/10.1016/j.jksus.2023.102695

Thandavan, T. M. K., Wong, C. S., Gani, S. M. A., & Nor, R. M. (2014). Photoluminescence properties of un-doped and Mn-doped ZnO nanostructures. Materials Express, 4(6), 475-482. https://doi.org/10.1166/mex.2014.1193

Toboonsung, B., & Singjai, P. (2011). Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. Journal of Alloys and Compounds, 509(10), 4132-4137. https://doi.org/10.1016/j.jallcom.2010.12.180

Toboonsung, B. (2017). Structure, magnetic property and energy band gap of Fe-doped NiO nanoparticles prepared by co-precipitation method. Key Engineering Materials, 751, 379-383. https://doi.org/10.4028/www.scientific.net/KEM.751.379

Wang, H., Li, C., Zhao, H., Li, R., & Liu, J. (2013). Synthesis, characterization, and electrical conductivity of ZnO with different morphologies. Powder Technology, 239, 266-271. https://doi.org/10.1016/j.powtec.2012.12.045

Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Advanced Functional Materials, 20(4), 561-572. https://doi.org/10.1002/adfm.200901884

Zhu, L., Zheng, Y., Hao, T., Shi, X., Chen, Y., & Ou-Yang, J. (2009). Synthesis of hierarchical ZnO nanobelts via Zn(OH)F intermediate using ionic liquid-assistant microwave irradiation method. Materials Letters, 63(28), 2405-2408. https://doi.org/10.1016/j.matlet.2009.07.062