Improvement of the Electrical Properties of ZnO Nanomaterials with Fe by Co-precipitation Method
Main Article Content
Abstract
Fe-doped ZnO nanomaterials were prepared by the co-precipitation method. The experiments used a solution of 0.5 M for ZnCl2, doped with FeSO4 in proportions of 0-100 wt.%, followed by the addition of 1 M for NaOH solution until a pH of 12 was reached. Next, the precipitated substances were calcinated at 550ºC for 3 h in air. SEM image analysis showed that the nanoparticles formed in the condition of pure ZnO and Fe2O3 whereas rod-shaped formed with Fe doping. Nanoparticles of ZnO transformed into nanorods when doped with Fe. EDS analysis detected Fe under the conditions of 3 and 5 wt.% doping. XRD patterns of ZnO and all doping of Fe in ZnO nanostructures were corresponded to a hexagonal wurtzite structure of ZnO which showed crystallite size in the range of 25-29 nm. The electrical properties of Fe-doped ZnO nanostructures were identified by the spectroscope measurements of fluorescence and ultraviolet-visible absorption, and the electrical conductivity was calculated. It was found that Fe doping at 3 wt.% produced the lowest energy band gap (based on spectroscopy results) and this condition was associated with the highest electrical conductivity of 0.21 x 10-3 (Ω.cm)-1 which was calculated from the measurement of electrical resistance by two probes. Therefore, Fe doping can improve the electrical properties of ZnO nanostructures.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ahmad, F., & Maqsood, A. (2022). Influence of nickel dopant on impedance, dielectric, and optical properties of ZnO nanoparticles at low temperatures. Journal of Materials Science: Materials in Electronics, 33, 12674-12700.
Alavi, M., Karimi, N., & Valadbeigi, T. (2019). Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis Lichen Aqueous extract against multi-drug-resistant bacteria. ACS Biomaterials Science & Engineering, 5(9), 4228-4243. https://doi.org/10.1021/acsbiomaterials.9b00274
Al-Gaashani, R., Radiman, S., Tabet, N., & Daud, A. R. (2014). Rapid synthesis and optical properties of hematite (α-Fe2O3) nanostructures using a simple thermal decomposition method. Journal of Alloys and Compounds, 550, 395-401. https://doi.org/10.1016/j.jallcom.2012.10.150
Alsmadi, A. K. M., Salameh, B., & Shatnawi, M. (2020). Influence of oxygen defects and their evolution on the ferromagnetic ordering and band gap of Mn-doped ZnO films. The Journal of Physical Chemistry C, 124(29), 16116-16126. https://doi.org/10.1021/acs.jpcc.0c04049
Asok, A., Gandhia, M. N., & Kulkarni, A. R. (2012). Enhanced visible photoluminescence in ZnO quantum dots by promotion of oxygen vacancy formation. Nanoscale, 4(16), 4943-4946. https://doi.org/10.1039/C2NR31044A
Baek, S., Song, J., & Lim, S. (2007). Improvement of the optical properties of ZnO nanorods by Fe doping. Physica B: Condensed Matter, 399(2), 101-104. https://doi.org/10.1016/j.physb.2007.05.030
Cheng, W., & Ma, X. (2009). Structural, optical and magnetic properties of Fe-doped ZnO. Journal of Physics: Conference Series, 152, Article 012039. https://doi.org/10.1088/1742-6596/152/1/012039
Divya, J., Pramothkumar, A., Gnanamuthu, S. J., Victoria, D. C. B., & Prabakar, P. C. J. (2020). Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Physica B: Condensed Matter, 588, Article 412169. https://doi.org/10.1016/j.physb.2020.412169
Gandhi, V., Ganesan, R., Syedahamed, H. H. A., & Thaiyan, M. (2014). Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. The Journal of Physical Chemistry C, 118(18), 9715-9725. https://doi.org/10.1021/jp411848t
Gaur, L. K., Gairola, P., Gairola, S. P., Mathpal, M. C., Kumar, P., Kumar, S., Kushavah, D., Agrahari, V., Aragon, F. F. H., Soler, M. A. G., & Swart, H. C. (2021). Cobalt doping induced shape transformation and its effect on luminescence in zinc oxide rod-like nanostructures. Journal of Alloys and Compounds, 868, Article 159189. https://doi.org/10.1016/j.jallcom.2021.159189
Khan, K., Shah, M. Z. U, Aziz, U., Hayat, K., Sajjad, M., Ahmad, I., Ahmad, S. A., Shah, S. K., & Shah, A. (2022a). Development of 1.6 V hybrid supercapacitor based on ZnO nanorods/MnO2 nanowires for next-generation electrochemical energy storage. Journal of Electroanalytical Chemistry, 922, Article 116753. https://doi.org/10.1016/j.jelechem.2022.116753
Khan, M. A., Nayan, N., Ahmad, M. K., Fhong, S. C., Ali, M. S. M., Mustafa, M. K., & Tahir, M. (2022b). Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices. Optical Materials, 117, Article 111132. https://doi.org/10.1016/j.optmat.2021.111132
Kumar, G. M., Ilanchezhiyan, P., Kawakita, J., Park, J., & Jayavel, R. (2013). Suppression of defect level emissions in low temperature fabricated one-dimensional Mn doped ZnO nanorods. Journal of Materials Science: Materials in Electronics, 24, 2989-2994. https://doi.org/10.1007/s10854-013-1201-7
Mahajan, P., Singh, A., & Arya, S. (2022). Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds, 814, Article 152292. https://doi.org/10.1016/j.jallcom.2019.152292
Mayandi, J., Madathil, R. K., Abinaya, C., Bethke, K., Venkatachalapathy, V., Rademann, K., Norby, T., & Finstad, T. G. (2021). Al-doped ZnO prepared by co-precipitation method and its thermoelectric characteristics. Materials Letters, 288, Article 129352. https://doi.org/10.1016/j.matlet.2021.129352
Meybodi, S. M., Hosseini, S. A., Rezaee, M., Sadrnezhaad, S. K., & Mohammadyani, D. (2012). Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrasonics Sonochemistry, 19(4), 841-845, https://doi.org/10.1016/j.ultsonch.2011.11.017
Mohammadi, M., Sabbaghi, S., Binazadeh, M., Ghaedi, S., & Rajabi, H. (2023). Type-1 α-Fe2O3/TiO2 photocatalytic degradation of tetracycline from wastewater using CCD-Based RSM optimization. Chemosphere, 336, Article 139311. https://doi.org/10.1016/j.chemosphere.2023.139311
Montes, J. M., Cuevas, F. G., & Cintas, J. (2011). Electrical conductivity of metal powder aggregates and sintered compacts. Granular Matter, 13, 439-446. https://doi.org/10.1007/s10035-010-0246-z
Montes, J. M., Cuevas, F. G., Cintas, J., & Gallardo, J. M. (2016). Electrical conductivity of metal powder aggregates and sintered compacts. Journal of Materials Science, 51, 822-835. https://doi.org/10.1007/s10853-015-9405-2
Nadeem, M. S., Munawar, T., Mukhtar, F., Rahman, M. N., Riaz, M., & Iqbal, F. (2021). Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceramics International, 47(8), 11109-11121. https://doi.org/10.1016/j.ceramint.2020.12.234
Nakate, U. T., Patil, P., Na, S.-N., Yu, Y. T., Suh, E.-K., & Hahn, Y.-B. (2021). Fabrication and enhanced carbon monoxide gas sensing performance of p-CuO/n-TiO2 heterojunction device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, Article 125962. https://doi.org/10.1016/j.colsurfa.2020.125962
Niranjan, K., Dutta, S., Varghese, S., Ray, A. K., & Barshilia, H. C. (2017). Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Applied Physics A, 123, Article 250. https://doi.org/10.1007/s00339-017-0890-9
Pramothkumar, A., Senthilkumar, N., Jenila, R. M., Durairaj, M., Girisun, S. T. C., & Potheher, I. V. (2021). A study on the electrical, magnetic and optical limiting behaviour of Pure and Cd-Fe co-doped CuO NPs. Journal of Alloys and Compounds, 878, Article 160332. https://doi.org/10.1016/j.jallcom.2021.160332
Roguai, S., & Djelloul, A. (2021). Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method. Solid State Communications, 334-335, Article 114362. https://doi.org/10.1016/j.ssc.2021.114362
Saadi, H., Rhouma, F. I. H., Benzarti, Z., Bougrioua, Z., Guermazi, S., & Khirouni, K. (2020). Electrical conductivity improvement of Fe doped ZnO nanopowders. Materials Research Bulletin, 129. https://doi.org/10.1016/j.materresbull.2020.110884
Sajjad, M., Ullah, I., Khan, M. I., Khan, J., Khan, M. Y., & Qureshi, M. T. (2018). Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results in Physics, 9, 1301-1309. https://doi.org/10.1016/j.rinp.2018.04.010
Salem, M., Akir, S., Ghrib, T., Daoudi, K., & Gaidi, M. (2016). Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. Journal of Alloys and Compounds, 685, 107-113. https://doi.org/10.1016/j.jallcom.2016.05.254
Samanta, A., Goswami, M. N., & Mahapatra, P. K. (2018). Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature. Journal of Alloys and Compounds, 730, 399-407. https://doi.org/10.1016/j.jallcom.2017.09.334
Sangchay, W., & Ubolchollakhat, K. (2016). Photocatalytic and antibacterial activities of ZnO powders prepared via a sol-gel method. KKU Engineering Journal, 43(1), 21-25.
Seid, E. T., & Dejene, F. B. (2019). Controlled synthesis of In-doped ZnO: the effect of indium doping concentration. Journal of Materials Science: Materials in Electronics, 30, 11833-11842. https://doi.org/10.1007/s10854-019-01557-w
Selvanayaki, R., Rameshbabu, M., Muthupandi, S., Razia, M., Sasi, F. S., Ravichandran, K., & Prabha, K. (2022). Structural, optical and electrical conductivity studies of pure and Fe doped ZincOxide (ZnO) nanoparticles. Materials Today: Proceedings, 49, 2628-2631. https://doi.org/10.1016/j.matpr.2021.08.045
Sharma, D., & Jha, R. (2017). Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceramics International, 43(11), 8488-8496. https://doi.org/10.1016/j.ceramint.2017.03.201
Singh, J., & Singh, R. C. (2021). Tuning of structural, optical, dielectric and transport properties of Fe-doped ZnO:V system. Materials Science in Semiconductor Processing, 121. https://doi.org/10.1016/j.mssp.2020.105305
Sugumaran, S., Ahmad, M. N. B., Jamlos, M. F., Bellan, C. S., Pattiyappan, S., Rajamani, R., & Sivaraman, P. K. (2021). Transparent with wide band gap In-ZnO nano thin film: Preparation and characterizations. Optical Materials, 49, 348-356. https://doi.org/10.1016/j.optmat.2015.10.003
Tahir, M., Fakhar-e-Alam, M., Atif, M., Mustafa, G., & Ali, Z. (2023). Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method. Journal of King Saud University - Science, 35(5), Article 102695. https://doi.org/10.1016/j.jksus.2023.102695
Thandavan, T. M. K., Wong, C. S., Gani, S. M. A., & Nor, R. M. (2014). Photoluminescence properties of un-doped and Mn-doped ZnO nanostructures. Materials Express, 4(6), 475-482. https://doi.org/10.1166/mex.2014.1193
Toboonsung, B., & Singjai, P. (2011). Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. Journal of Alloys and Compounds, 509(10), 4132-4137. https://doi.org/10.1016/j.jallcom.2010.12.180
Toboonsung, B. (2017). Structure, magnetic property and energy band gap of Fe-doped NiO nanoparticles prepared by co-precipitation method. Key Engineering Materials, 751, 379-383. https://doi.org/10.4028/www.scientific.net/KEM.751.379
Wang, H., Li, C., Zhao, H., Li, R., & Liu, J. (2013). Synthesis, characterization, and electrical conductivity of ZnO with different morphologies. Powder Technology, 239, 266-271. https://doi.org/10.1016/j.powtec.2012.12.045
Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Advanced Functional Materials, 20(4), 561-572. https://doi.org/10.1002/adfm.200901884
Zhu, L., Zheng, Y., Hao, T., Shi, X., Chen, Y., & Ou-Yang, J. (2009). Synthesis of hierarchical ZnO nanobelts via Zn(OH)F intermediate using ionic liquid-assistant microwave irradiation method. Materials Letters, 63(28), 2405-2408. https://doi.org/10.1016/j.matlet.2009.07.062