Optimizing Energy Efficiency of Adiabatic Frequency Conversion in an Add-Drop Resonator

Main Article Content

Busara Pattanasiri
Werachai Lipar
Santhad Pithakwongsaporn

Abstract

Adiabatic frequency conversion (AFC) in add-drop resonators holds promise for enhancing energy efficiency in photonic applications. This theoretical study investigates the conditions for optimizing the energy efficiency of the drop port within an add-drop resonator configuration. The analysis considers both fixed input pulse shapes and continuous wave inputs, taking into account AFC's relative timescales. Specifically, the critical coupling regime is explored, and it is observed that the extrinsic decay rates into the drop port and through port converge to nearly equal values, thereby maximizing drop port efficiency. Moreover, when a global parameter is swept, it is demonstrated that the maximal efficiency of the drop port is achieved when the extrinsic decay rates of both ports are equal. This optimization strategy extends to scenarios involving continuous wave inputs as well. These findings provide valuable insights for designing high-performance add-drop resonators and advancing the practical implementation of AFC in photonic systems.

Article Details

Section
Original Research Articles

References

Boyd, R.W. (2019). Nonlinear Optics (3rd ed.). Academic Press.

Breunig, I. (2016). Three-wave mixing in whispering gallery resonators. Laser & Photonics Reviews, 10(4), 569-587. https://doi.org/10.1002/lpor.201600038

Cortes-Herrera, L., He, X., Cardenas, J., & Agrawal, G. P. (2022). Optimization of adiabatic frequency conversion in an all-pass resonator. Physical Review A, 106, Article 023517. https://doi.org/10.1103/PhysRevA.106.023517

Daniel, B. A., Maywar, D. N., & Agrawal, G. P. (2011a). Dynamic mode theory of optical resonators undergoging refractive index changes. Journal of the Optical Society of America B, 28(9), 2207-2215. https://doi.org/10.1364/JOSAB.28.002207

Daniel, B. A., Maywar, D. N., & Agrawal, G. P. (2011b). Efficient adiabatic wavelength conversion in Gires-Tournois resonators. Optics Letters, 36(21), 4155-4157. https://doi.org/10.1364/OL.36.004155

Fan, L., Zou, C.-L., Poot, M., Cheng, R., Guo, X., Han, X., & Tang, H. X. (2016). Integrated optomechanical single-photon frequency shifter. Nature Photonics, 10(12), 766-770. https://doi.org/10.1038/nphoton.2016.206

Haus, H. A. (1984). Waves and fields in optoelectronics. Prentice Hall.

He, X., Cortes-Herrera, L., Opong-Mensah, K., Zhang, Y., Song, M., Agrawal, G. P., & Cardenas, J. (2022). Electrically induced adiabatic frequency conversion in an integrated lithium niobate ring resonator. Optics Letters, 47(22), 5849-5852. https://doi.org/10.1364/OL.473113

Kabakova, I. V., Yu, Z., Halliwell, D., Fonjallaz, P. Y., Tarasenko, O., de Sterke, C. M., & Margulis, W. (2012). Switching and dynamic wavelength conversion in a fiber grating cavity. Journal of the Optical Society of America B, 29(1), 155-160. https://doi.org/10.1364/JOSAB.29.000155

Kampfrath, T., Beggs, D. M., White, T. P., Melloni, A., Krauss, T. F., & Kuipers, L. (2010). Ultrafast adiabatic manipulation of slow light in a photonic crystal. Physical Reviews A, 81(4), Article 043837. https://doi.org/10.1103/PhysRevA.81.043837

Kondo, K., & Baba, T. (2014). Dynamic wavelength conversion in copropagating slow-light pulses. Physical Review Letters, 112(22), Article 223904. https://doi.org/10.1103/PhysRevLett.112.223904

Kondo, K., & Baba, T. (2018). Adiabatic wavelength redshift by dynamic carrier depletion using p-i-n diode-loaded photonic crystal waveguides. Physical Reviews A, 97(3), Article 033818. https://doi.org/10.1103/PhysRevA.97.033818

Lin, Q., Zhang, P., Fauchet, M., & Agrawal, G. P. (2006). Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Optics Express, 14(11), Article 4786. https://doi.org/10.1364/OE.14.004786

Manolatou, C., Khan, M. J., Fan, S., Villeneuve, P. R., & Haus, H. A. (1999). Coupling of modes analysis of resonant channel add-drop filter. IEEE Journal of Quantum Electronics, 35(9), 1322-1331.

Mathlouthi, W., Rong, H., & Paniccia, M. (2008). Characterization of efficient wavelength conversion by four-wave mixing in submicron silicon waveguides. Optics Express, 16, Article 16735. https://doi.org/10.1364/OE.16.016735

Minet, Y., Reis, L., Szabados, J., Werner, C. S., Zappe, H., Buse, K., & Breunig, I. (2020). Pockels-effect-based adiabatic frequency conversion in ultrahigh-Q microresonators. Optics Express, 28(3), 2939-2947. https://doi.org/10.1364/OE.378112

Minkov, M., & Fan, S. (2018). Localization and time-reversal of light through dynamic modulation. Physical Reviews B, 97(6), Article 060301(R). https://doi.org/10.1103/PhysRevB.97.060301

Notomi, M., & Mitsugi, S. (2006). Wavelength conversion via dynamic refractive index tuing of a cavity. Physical Reviews A, 73(5), Article 051803. https://doi.org/10.1103/PhysRevA.73.051803

Preble, S. F., Xu, Q., & Lipson, M. (2007). Changing the colour of light in a silicon resonator. Nature Photonics, 1(5), 293-296.

Shcherbakov, M. R., Shafirin, P., & Shvets, G. (2019). Overcoming the efficiency-bandwidth tradeoff for optical harmonies generation using nonlinear time-variant resonators. Physical Reviews A, 100(6), Article 063847. https://doi.org/10.1103/PhysRevA.100.063847

Tanabe, T., Kuramochi, E., Taniyama, H., & Notomi, M. (2010). Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p-i-n integrated photonic crystal nanocavity. Optics Letters, 35(23), 3895-3897. https://doi.org/10.1364/OL.35.003895

Tanabe, T., Notomi, M., Taniyama, H., & Kuramochi, E. (2009). Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Physical Review Letters, 102(4), Article 043907. https://doi.org/10.1103/PhysRevLett.102.043907

Xiao, Y., Maywar, D. N., & Agrawal, G. P. (2011). Optical pulse propagation in dynamic Fabry-Perot resonators. Journal of the Optical Society of America B, 28(7), 1685-1692. https://doi.org/10.1364/JOSAB.28.001685