Microbial Plastics: Structure, Engineering, Applications, Degradation, and Future Scope of Sustainable Bioplastics
Main Article Content
Abstract
The rampant usage of non-biodegradable materials and in particular conventional plastics hampers the ecological balance and poses environmental hazards. Conventional plastics persist in the environment for long periods due to their resistance to degradation, contributing to pollution and health risks. There is an urgent need for sustainable and biodegradable alternatives to mitigate these issues. Polyhydroxyalkanoate (PHA) is gaining attraction as a potential replacement for non-biodegradable polymers due to rising awareness of global environmental concerns. Microbial plastics have physicochemical properties like petrochemical plastics. These biopolymers usually comprise hydroxy-acyl-CoA derivatives and are synthesized from fatty acid metabolic pathways. Microbial plastics are present as storage granules that accumulate intracellularly in microorganisms. However, the physicochemical properties of these bioplastics vary depending on the microbial origin and synthesis mechanism. Numerous multidisciplinary scientific approaches have been used to elucidate various aspects of microbial bioplastics. PHA has promising potential applications in a variety of industries as well as in the medical field. However, the high production cost of PHA has been a significant disadvantage. Therefore, scientists have recently developed transgenic plants containing microbial PHA biosynthesis genes to lower the cost of the polymer. Further effort is required in this regard to increase the production of bioplastics for the successful replacement of non-biodegradable plastics. This review seeks to address these challenges by examining microbial bioplastic synthesis and degradation mechanisms, particularly PHAs, and exploring their industrial and therapeutic applications. It aims to provide insights into current limitations and propose strategies for overcoming them to establish microbial bioplastics as a viable and sustainable alternative to conventional plastics.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abe, M., Kobayashi, K., Honma, N., & Nakasaki, K. (2010). Microbial degradation of poly (butylene succinate) by Fusarium solani in soil environments. Polymer Degradation and Stability, 95(2), 138-143. https://doi.org/10.1016/j.polymdegradstab.2009.11.042
Aburas, M. M. A. (2016). Degradation of poly(3-hydroxybuthyrate) using Aspergillus oryzae obtained from uncultivated soil. Life Science Journal, 13(3), 51-56.
Adamus, G., Sikorska, W., Janeczek, H., Kwiecień, M., Sobota, M., & Kowalczuk, M. (2012). Novel block copolymers of atactic PHB with natural PHA for cardiovascular engineering: Synthesis and characterization. European Polymer Journal, 48(3), 621-631. https://doi.org/10.1016/j.eurpolymj.2011.12.017
Adane, L., & Muleta, D. (2011). Survey on the usage of plastic bags, their disposal and adverse impacts on environment: A case study in Jimma City, Southwestern Ethiopia. Journal of Toxicology and Environmental Health Sciences, 3(8), 234-248.
Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment, 5(1), 23-34. https://doi.org/10.4236/jacen.2016.51003
Ahuja, V., Singh, P. K., Mahata, C., Jeon, J.-M., Kumar, G., Yang, Y.-H., & Bhatia, S. K. (2024). A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater. Microbial Cell Factories, 23, Article 187. https://doi.org/10.1186/s12934-024-02430-0
Ajellal, N., Durieux, G., Delevoye, L., Tricot, G., Dujardin, C., Thomas, C. M., & Gauvin, R. M. (2010). Polymerization of racemic β-butyrolactone using supported catalysts: a simple access to isotactic polymers. Chemical Communications, 46(7), 1032-1034. https://doi.org/10.1039/B923546A
Ali, S. S., Abdelkarim, E. A., Elsamahy, T., Al-Tohamy, R., Li, F., Kornaros, M., Zuorro, A., Zhu, D., & Sun, J. (2023). Bioplastic production in terms of life cycle assessment: A state-of-the-art review, Environmental Science and Ecotechnology, 15, Article 100254. https://doi.org/10.1016/j.ese.2023.100254
Ali, W. S., Zaki, N. H., & Obiad, S. Y. N. (2017). Production of bioplastic by bacteria isolated from local soil and organic wastes. Current Research in Microbiology and Biotechnology, 5(2), 1012-1017.
Amini, F., Semnani, D., Karbasi, S., & Banitaba, S. N. (2019). A novel bilayer drug-loaded wound dressing of PVDF and PHB/Chitosan nanofibers applicable for post-surgical ulcers. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(13), 772-777. https://doi.org/10.1080/00914037.2018.1506982
Anderson, A. J., & Dawes, E. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54(4), 450-472. https://doi.org/10.1128/mr.54.4.450-472.1990
Ang, S. L., Sivashankari, R., Shaharuddin, B., Chuah, J.-A., Tsuge, T., Abe, H., & Sudesh, K. (2020). Potential applications of polyhydroxyalkanoates as a biomaterial for the aging population. Polymer Degradation and Stability, 181, Article 109371. https://doi.org/10.1016/j.polymdegradstab.2020.109371
Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161-174. https://doi.org/10.1016/j.ijbiomac.2016.04.069
Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T.-A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), Article e07918. https://doi.org/10.1016/j.heliyon.2021.e07918
Bano, S., Aslam, A. A., Khan, A., Shabbir, A., Qayyum, F., Wahab, N., Jabar, A., Islam, I. U., & Ng, S. L. (2024). A mini-review on polyhydroxyalkanoates: Synthesis, extraction, characterization, and applications. Process Biochemistry, 146, 250-261. https://doi.org/10.1016/j.procbio.2024.07.033
Barnard, G. N., & Sanders, J. K. M. (1989). The poly-β-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. Journal of Biological Chemistry, 264(6), 3286-3291. https://doi.org/10.1016/S0021-9258(18)94064-0
Beun, J. J., Dircks, K., Van Loosdrecht, M. C. M., & Heijnen, J. J. (2002). Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 36(5), 1167-1180. https://doi.org/10.1016/s0043-1354(01)00317-7
Blinková, M., & Boturová, K. (2017). Influence of bacteria on degradation of bioplastics. In IOP Conference Series: Earth and Environmental Science, 92, Article 012004. https://doi.org/10.1088/1755-1315/92/1/012004
Boyandin, A. N., Prudnikova, S. V., Karpov, V. A., Ivonin, V. N., Đỗ, N. L., Nguyễn, T. H., Lê, T. M. H., Filichev, N. L., Levin, A. L., Filipenko, M. L., Volova, T. G., & Gitelson, I. I. (2013). Microbial degradation of polyhydroxyalkanoates in tropical soils. International Biodeterioration and Biodegradation, 83, 77-84. https://doi.org/10.1016/j.ibiod.2013.04.014
Brandl, H., Gross, R. A., Lenz, R. W., & Fuller, R. C. (2005). Plastics from bacteria and for bacteria: poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. In A. Fiechter (Ed.). Microbial Bioproducts. Advances in Biochemical Engineering/Biotechnology. Vol 41. (pp. 77-93). Springer. https://doi.org/10.1007/BFb0010232
Brulé, E., Gaillard, S., Rager, M.-N., Roisnel, T., Guérineau, V., Nolan, S. P., & Thomas, C. M. (2011). Polymerization of racemic β-butyrolactone using gold catalysts: a simple access to biodegradable polymers. Organometallics, 30(10), 2650-2653. https://doi.org/10.1021/om200271q
Cesário, M. T., Raposo, R. T., de Almeida, M. C. M. D., Keulen, F. V., Ferreira, B. S., & da Fonseca, M. M. R. (2014). Enhanced bioproduction of poly 3 hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31(1), 104-113. https://doi.org/10.1016/j.nbt.2013.10.004
Chacón, M., Wongsirichot, P., Winterburn, J., & Dixon, N. (2024). Genetic and process engineering for polyhydroxyalkanoate production from pre- and post-consumer food waste. Current Opinion in Biotechnology, 85, Article 103024. https://doi.org/10.1016/j.copbio.2023.103024
Chauhan, K., Kaur, R., & Chauhan, I. (2024). Sustainable bioplastic: a comprehensive review on sources, methods, advantages, and applications of bioplastics. Polymer-Plastics Technology and Materials, 63(8), 913-918. https://doi.org/10.1080/25740881.2024.2307369
Chee, J.-Y., Yoga, S.-S., Lau, N.-S., Ling, S.-C., Abed, R. M. M., & Sudesh, K. (2010). Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In A. Méndez-Vilas (Ed.). Current research, technology, and education topics in Applied Microbiology and Microbial Biotechnology (pp. 1395-1404). Formatex Research Center.
Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578. https://doi.org/10.1016/j.biomaterials.2005.04.036
Colombo, B., Sciarria, T. P., Reis, M., Scaglia, B., & Adani, F. (2016). Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresource Technology, 218, 692-699. https://doi.org/10.1016/j.biortech.2016.07.024
Dalton, D. A., Ma, C., Murthy, G. S., & Strauss, S. H. (2012). Bioplastic production by transgenic poplar. Information Systems for Biotechnology News Report, 2012, 7-10.
Dawes, E. A., & Senior, P. J. 1973. The role and regulation of energy reserve polymers in micro-organisms. Advances in Microbial Physiology, 10, 135-266. https://doi.org/10.1016/s0065-2911(08)60088-0
Deeken, C. R., Chen, D. C., Lopez-Cano, M., Martin, D. P., & Badhwar, A. (2023). Fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for soft tissue repair and reconstruction: A scoping review. Frontiers in Surgery, 10. Article 1157661. https://doi.org/10.3389/fsurg.2023.1157661
Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Van de Wiele, T., Sorgeloos, P., Bossier, P. & Verstraete, W. (2007). The bacterial storage compound poly‐β‐hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environmental Microbiology, 9(2), 445-452. https://doi.org/10.1111/j.1462-2920.2006.01161.x
Dias, J. M. L., Lemos, P. C., Serafim, L. S., Oliveira, C., Eiroa, M., Albuquerque, M. G. E., Ramos, A. M., Oliveira, R. & Reis, M. A. M. (2006). Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromolecular Bioscience, 6(11), 885-906. https://doi.org/10.1002/mabi.200600112
Ding, Y., Li, W., Müller, T., Schubert, D. W., Boccaccini, A. R., Yao, Q., & Roether, J. A. (2016). Electrospun polyhydroxybutyrate/poly (ε-caprolactone)/58S sol–gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering. ACS Applied Materials and Interfaces, 8(27), 17098-17108.
Doi, Y., Kitamura, S., & Abe, H. (1995). Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 28(14), 4822-4828. https://doi.org/10.1021/ma00118a007
El-malek, F., Khairy, H., Farag, A., & Omar, S. (2020). The sustainability of microbial bioplastics, production and applications. International Journal of Biological Macromolecules, 157, 319-328. https://doi.org/10.1016/j.ijbiomac.2020.04.076
Fukui, T., Kato, M., Matsusaki, H., Iwata, T., & Doi, Y. (1998). Morphological and 13C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in Pseudomonas sp. 61-3. FEMS Microbiology Letters, 164(1), 219-225. https://doi.org/10.1111/j.1574-6968.1998.tb13089.x
Giosafatto, C. V. L., Fusco, A., Al-Asmar, A., & Mariniello, L. (2020). Microbial transglutaminasee as a tool to improve the features of hydrocolloid-based bioplastics. International Journal of Molecular Sciences, 21(10), Article 3656. https://doi.org/10.3390/ijms21103656
Gonzalez-Gutierrez, J., Partal, P., Garcia-Morales, M., & Gallegos, C. (2010) Development of highly-transparent protein/starch-based bioplastics. Bioresource Technology, 101(6), 2007-2013. https://doi.org/10.1016/j.biortech.2009.10.025
Grothe, E., Moo-Young, M., & Chisti, Y. (1999). Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology, 25(1-2), 132-141. https://doi.org/10.1016/S0141-0229(99)00023-X
Hamdy, S. M., Danial, A. W., El-Rab, S. M. F. G., Shoreit, A. A. M. & Hesham, A. E.-L. (2022). Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiology, 22, Article 183. https://doi.org/10.1186/s12866-022-02593-z
Hempel, F., Bozarth, A. S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbüchel, A. & Maier, U. G. (2011). Microalgae as bioreactors for bioplastic production. Microbial Cell Factories, 10, Article 81. https://doi.org/10.1186/1475-2859-10-81
Hermann-Krauss, C., Koller, M., Muhr, A., Fasl, H., Stelzer, F., & Braunegg, G. (2013). Archaeal production of polyhydroxyalkanoate (PHA) co- and terpolyesters from biodiesel industry-derived by-products. Archaea, 2013(1), Article 129268. https://doi.org/10.1155/2013/129268
Hrabak, O. (1992). Industrial production of poly-β-hydroxybutyrate. FEMS Microbiology Letters, 103(2-4), 251-255. https://doi.org/10.1016/0378-1097(92)90317-H
Hu, F.-Q., You, S., & Chen, G.-Q. (2005). [Synthesis of medium chain length polyhydroxyalkanoate in type I PHA synthase negative mutant of Aeromonas hydrophila.] Sheng Wu Gong Cheng Xue Bao, 21(4), 524-529.
Ishii, N., Inoue, Y., Tagaya, T., Mitomo, H., Nagai, D., & Kasuya, K.-I. (2008). Isolation and characterization of poly (butylene succinate)-degrading fungi. Polymer Degradation and Stability, 93(5), 883-888. https://doi.org/10.1016/j.polymdegradstab.2008.02.005
Jau, M.-H., Yew, S.-P., Toh, P. S. Y., Chong, A. S. C., Chu, W.-L., Phang, S.-M., Nazalan, N. & Sudesh, K. (2005). Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P (3HB)] by Spirulina platensis. International Journal of Biological Macromolecules, 36(3), 144-151. https://doi.org/10.1016/j.ijbiomac.2005.05.002
Jia, Q., Wang, H., & Wang, X. (2013). Dynamic synthesis of polyhydroxyalkanoates by bacterial consortium from simulated excess sludge liquid. Bioresource Technology, 140, 328-336. https://doi.org/10.1016/j.biortech.2013.04.105
Jung, H.-W., Yang, M.-K., & Su, R.-C. (2018). Purification, characterization, and gene cloning of an Aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Polymer Degradation and Stability, 154, 186-194. https://doi.org/10.1016/ j.polymdegradstab.2018.06.002
Khatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., & Cetecioglu, Z. (2021). Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Waste Management, 119, 374-388. https://doi.org/10.1016/j.wasman.2020.10.008
Kourtz, L., Dillon, K., Daughtry, S., Peoples, O. P., & Snell, K. D. (2007). Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Research, 16, 759-769. https://doi.org/10.1007/s11248-007-9067-1
Kucera, D., Pernicová, I., Kovalcik, A., Koller, M., Mullerova, L., Sedlacek, P., Mravec, F., Nebesarova, J., Kalina, M., Marova, I., Krzyzanek, V., & Obruca, S. (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresource Technology, 256, 552-556. https://doi.org/10.1016/j.biortech.2018.02.062
Kumbar, S. G., Laurencin, C. T., & Deng, M. (2014). Natural and synthetic biomedical polymers. Elsevier.
Laborit, H. (1964). Sodium 4-hydroxybutyrate. International Journal of Neuropharmacology, 3(4), 433-451. https://doi.org/10.1016/0028-3908(64)90074-7
Lee, K. M., Gimore, D. F., & Huss, M. J. (2005). Fungal degradation of the bioplastic PHB (Poly-3-hydroxy-butyric acid). Journal of Polymers and the Environment, 13(3), 213-219.
Lee, S. Y. (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 14(11), 431-438. https://doi.org/10.1016/0167-7799(96)10061-5
Lizarraga‐Valderrama, L. R., Nigmatullin, R., Taylor, C., Haycock, J. W., Claeyssens, F., Knowles, J. C., & Roy, I. (2015). Nerve tissue engineering using blends of poly (3‐hydroxyalkanoates) for peripheral nerve regeneration. Engineering in Life Sciences, 15(6), 612-621. https://doi.org/10.1002/elsc.201400151
Lu, Q., Zhou, Y., Sui, Q., & Zhou, Y. (2023). Mechanism and characterization of microplastic aging process: a review. Frontiers of Environmental Science and Engineering, 17(8), Article 100. https://doi.org/10.1007/s11783-023-1700-6
Lu, X. Y., Ciraolo, E., Stefenia, R., Chen, G. Q., Zhang, Y., & Hirsch, E. (2011). Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Applied Microbiology and Biotechnology, 89(5), 1423-1433.
Lü, Y. (2007). Advance on the production of polyhydroxyalkanoates by mixed cultures. Frontiers in Biology, 2(1), 21-25. https://doi.org/10.1007/s11515-007-0003-9
Luengo, J. M., Garcı́a, B., Sandoval, A., Naharro, G., & Olivera, E. R. (2003). Bioplastics from microorganisms. Current Opinion in Microbiology, 6(3), 251-260. https://doi.org/10.1016/S1369-5274(03)00040-7
Ma, Y., Li, L., & Wang, Y. (2018). Development of PLA‐PHB‐based biodegradable active packaging and its application to salmon. Packaging Technology and Science, 31(11), 739-746. https://doi.org/10.1002/pts.2408
Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews, 63(1), 21-53.
Maestro, B., & Sanz, J. M. (2017). Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microbial Biotechnology, 10(6), 1323-1337. https://doi.org/10.1111/1751-7915.12718
Malik, M. R., Yang, W., Patterson, N., Tang, J., Wellinghoff, R. L., Preuss, M. L., Burkitt, C., Sharma, N., Ji, Y., Jez, J. M., Peoples, O. P., Jaworski, J. G., Cahoon, E. B., & Snell, K. D. (2015) Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds. Plant Biotechnology Journal, 13(5), 675-688. https://doi.org/10.1111/pbi.12290
Mamelak, M. (1989). Gammahydroxybutyrate: an endogenous regulator of energy metabolism. Neuroscience and Biobehavioral Reviews, 13(4), 187-198. https://doi.org/10.1016/S0149-7634(89)80053-3
Marang, L., Jiang, Y., van Loosdrecht, M. C. M., & Kleerebezem, R. (2014). Impact of non-storing biomass on PHA production: an enrichment culture on acetate and methanol. International Journal of Biological Macromolecules, 71, 74-80. https://doi.org/10.1016/j.ijbiomac.2014.04.051
Martin, D. P., Skraly, F., & Williams, S. F. (1997). Polyhydroxyalkanoate compositions having controlled degradation rates. United States. Patent No. US6878758B2. USPTO Patent Center.
Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., & Doi, Y. (1998). Cloning and molecular analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. Journal of Bacteriology, 180(24), 6459-6467. https://doi.org/10.1128/jb.180.24.6459-6467.1998
McAdam, B., Fournet, M. B., McDonald, P., & Mojicevic, M. (2020). Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers, 12(12), Article 2908. https://doi.org/10.3390/polym12122908
McQualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. W., & Nielsen, L. K. (2014). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 10, 569-578. https://doi.org/10.1111/pbi.12298
Mergaert, J., & Swings, J. (1996). Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. Journal of Industrial Microbiology, 17, 463-469. https://doi.org/10.1007/BF01574777
Miyake, M., Kataoka, K., Shirai, M., & Asada, Y. (1997) Control of poly-beta-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. Journal of Bacteriology, 179, 5009-5013. https://doi.org/10.1128/jb.179.16.5009-5013.1997
Mostafa, Y. S., Alrumman, S. A., Alamri, S. A., Otaif, K. A., Mostafa, M. S., & Alfaify, A. M. (2020). Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Scientific Reports, 10(1), Article 8815. https://doi.org/10.1038/s41598-020-65858-5
Muhammadi, Shabina, Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3-4), 56-77. https://doi.org/10.1080/17518253.2015.1109715
Müller, H.-M., & Seebach, D. (1993). Poly(hydroxyalkanoates): A fifth class of physiologically important organic biopolymers? Angewandte Chemie International Edition in English, 32(4), 477-502. https://doi.org/10.1002/anie.199304771
Nadhman, A., Hasan, F., Shah, Z., Hameed, A., & Shah, A. A. (2012). Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) depolymerase from Aspergillus sp. NA-25. Applied Biochemistry and Microbiology, 48(5), 482-487.
Nakasaki, K., Matsuura, H., Tanaka, H., & Sakai, T. (2006). Synergy of two thermophiles enables decomposition of poly-ɛ-caprolactone under composting conditions. FEMS Microbiology Ecology, 58(3), 373-383. https://doi.org/10.1111/j.1574-6941.2006.00189.x
Nelson, T., Kaufman, E., Kline, J., & Sokoloff, L. (1981). The extraneural distribution of γ‐hydroxybutyrate. Journal of Neurochemistry, 37(5), 1345-1348. https:/doi.org/ 10.1111/j.1471-4159.1981.tb04689.x
Niaounakis, M. (2015). Biopolymers: applications and trends. William Andrew. https://doi.org/10.1016/C2014-0-00936-7
Nigmatullin, R., Thomas, P., Lukasiewicz, B., Puthussery, H., & Roy, I. (2015). Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. Journal of Chemical Technology and Biotechnology, 90(7), 1209-1221. https://doi.org/10.1002/jctb.4685
Novikova, L. N., Pettersson, J., Brohlin, M., Wiberg, M., & Novikov, L. N. (2008). Biodegradable poly-β-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterial, 29(9), 1198-1206. https://doi.org/10.1016/j.biomaterials.2007.11.033
Obruca, S., Marova, I., Melusova, S., & Ondruska, V. (2009). Production of polyester-based bioplastics by Bacillus megaterium grown on waste cheese whey substrate under exogenous stress. New Biotechnology, 25(Suppl.), S257. https://doi.org/10.1016/j.nbt.2009.06.574
Oppermann-Sanio, F. B., & Steinbüchel, A. (2002). Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 89(1), 11-22. https://doi.org/10.1007/s00114-001-0280-0
Page, W. J. (1989). Production of poly-β-hydroxybutyrate by Azotobacter vinelandii strains UWD during growth on molasses and other complex carbon sources. Applied Microbiology and Biotechnology, 31(4), 329-333. https://doi.org/10.1007/BF00257598
Panda, B., & Mallick, N. (2007). Enhanced poly-beta-hydroxy-butyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Letters in Applied Microbiology, 44(2), 194-198. https://doi.org/10.1111/j.1472-765X.2006.02048.x
Panith, N., Assavanig, A., Lertsiri, S., Bergkvist, M., Surarit, R., & Niamsiri, N. (2016). Development of tunable biodegradable polyhydroxyalkanoates microspheres for controlled delivery of tetracycline for treating periodontal disease. Journal of Applied Polymer Science,133(42), Article 44128. https://doi.org/10.1002/app.44128
Peng, Q., Zhang, Z.-R., Gong, T., Chen, G.-Q., Sun, X. (2012). A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials, 33(5), 1583-1588. https://doi.org/10.1016/j.biomaterials.2011.10.072
Penkhrue, W., Khanongnuch, C., Masaki, K., Pathom-aree, W., Punyodom, W., & Lumyong, S. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology and Biotechnology, 31, 1431-1442. https://doi.org/10.1007/s11274-015-1895-1
Piyathilake, U., Lin, C., Bolan, N., Bundschuh, J., Rinklebe, J., & Herath, I. (2024). Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. Chemosphere, 355, Article 141773. https://doi.org/10.1016/j.chemosphere.2024.141773
Rebah, F. B., Prévost, D., Tyagi, R. D., & Belbahri, L. (2009). Poly-β-hydroxybutyrate production by fast-growing Rhizobia cultivated in sludge and in industrial wastewater. Applied Biochemistry and Biotechnology, 158(1), 155-163. https://doi.org/10.1007/s12010-008-8358-1
Reddy, C. S. K., Ghai, R., & Kalia, V. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137-146. https://doi.org/10.1016/S0960-8524(02)00212-2
Reddy, M. V., & Mohan, S. V. (2015). Polyhydroxyalkanoates production by newly isolated bacteria Serratia ureilytica using volatile fatty acids as substrate: Bio-electro kinetic analysis. Journal of Microbial and Biochemical Technology, 7(1), 26-32.
Ruiz, C., Kenny, S. T., Narancic, T., Babu, R., & O’ Connor, K. (2019). Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. Journal of Biotechnology, 306, 9-15. https://doi.org/10.1016/j.jbiotec.2019.08.020
Sabarinathan, D., Chandrika, S. P., Venkatraman, P., Easwaran, M., Sureka, C. S., & Preethi, K. (2018). Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. Informatics in Medicine Unlocked, 11, 61-67. https://doi.org/10.1016/j.imu.2018.04.009
Sadat-Shojai, M., Khorasani, M.-T., & Jamshidi, A. (2016). A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chemical Engineering Journal, 289, 38-47. https://doi.org/10.1016/j.cej.2015.12.079
Sankhla, I. S., Sharma, G., & Tak, A. (2020). Fungal degradation of bioplastics: An overview. In J. Singh & P. Gehlot (Eds). New and future developments in microbial biotechnology and bioengineering (pp. 35-47). Elsevier. https://doi.org/10.1016/B978-0-12-821007-9.00004-8
Sarıipek, F. B. (2024). Biopolymeric nanofibrous scaffolds of poly(3-hydroxybuthyrate)/chitosan loaded with biogenic silver nanoparticle synthesized using curcumin and their antibacterial activities. International Journal of Biological Macromolecules, 256(Part 1), Article 128330. https://doi.org/10.1016/j.ijbiomac.2023.128330
Serafim, L. S., Lemos, P. C., Albuquerque, M. G., & Reis, M. A. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Applied Microbiology and Biotechnology, 81, 615-628.
Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005
Sharma, L., Singh, K. A., Panda, B., & Mallick, N. (2007). Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Bioresource Technology, 98(5), 987-993. https://doi.org/10.1016/j.biortech.2006.04.016
Shishatskaya, E. I., Nikolaeva, E. D., Vinogradova, O. N., & Volova, T. G. (2016). Experimental wound dressings of degradable PHA for skin defect repair. Journal of Materials Science: Materials in Medicine, 27(11), Article 165. https://doi.org/10.1007/s10856-016-5776-4
Simó-Cabrera, L., García-Chumillas, S., Hagagy, N., Saddiq, A., Tag, H., Selim, S., AbdElgawad, H., Agüero, A. A., Sánchez, F. M., Cánovas, V., Pire, C. & Martínez-Espinosa, R. M. (2021). Haloarchaea as cell factories to produce bioplastics. Marine Drugs, 19(3), Article 159. https://doi.org/10.3390/md19030159
Srubar, W. V., III, Pilla, S., Wright, Z. C., Ryan, C. A., Greene, J. P., Frank, C. W., & Billington, S. L. (2012). Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites. Composites Science and Technology, 72(6), 708-715. https://doi.org/10.1016/j.compscitech.2012.01.021
Stal, L. J. (1992). Poly(hydroxyalkanoates) in cyanobacteria: an overview. FEMS Microbiology Letters, 103(2-4), 169-180. https://doi.org/10.1016/0378-1097(92)90307-A
Steinbüchel, A., & Schlegel, H. G. (1991). Physiology and molecular genetics of poly (β‐hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Molecular Microbiology, 5(3), 535-542.
Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. https://doi.org/10.1016/S0079-6700(00)00035-6
Sudesh, K., Loo, C. Y., Goh, L. K., Iwata, T., & Maeda, M. (2007). The oil‐absorbing property of polyhydroxyalkanoate films and its practical application: a refreshing new outlook for an old degrading material. Macromolecular Bioscience, 7(11), 1199-1205.
Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnology Advances, 25(2), 148-175. https://doi.org/10.1016/j.biotechadv.2006.11.007
Swetha, T. A., Bora, A., Ananthy, V., Ponnuchamy, K., Muthusamy, G., & Arun, A. (2024). A review of bioplastics as an alternative to petrochemical plastics: Its types, structure, characteristics, degradation, standards, and feedstocks. Polymers for Advanced Technologies, 35(6), Article e6482. https://doi.org/10.1002/pat.6482
Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S., & Thakur, V. K. (2018). Sustainability of bioplastics: Opportunities and challenges. Current Opinion in Green and Sustainable Chemistry, 13, 68-75.
Tokiwa, Y., & Calabia, B. P. (2004). Review degradation of microbial polyesters. Biotechnology Letters, 26, 1181-1189.
Trivedi, P., Hasan, A., Akhtar, S., Siddiqui, M. H., Sayeed, U., & Khan, M. K. A. (2016). Role of microbes in degradation of synthetic plastics and manufacture of bioplastics. Journal of Chemical and Pharmaceutical Research, 8(3), 211-216.
UNEP. (2009). Converting waste agricultural biomass into a resource-compendium of technologies. United Nations Environment Programme.
Vaidya, A. A., Collet, C., Gaugler, M., & Lloyd-Jones, G. (2019). Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Materials Today Communications, 19, 286-296. https://doi.org/10.1016/j.mtcomm.2019.02.008
Van Immerseel, F., Russell, J. B., Flythe, M. D., Gantois, I., Timbermont, L., Pasmans, F., & Ducatelle, R. (2006). The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathology, 35(3), 182-188.
Van Loosdrecht, M. C. M., Pot, M. A., & Heijnen, J. J. (1997). Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 35(1), 41-47. https://doi.org/10.1016/S0273-1223(96)00877-3
Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., & Radecka, I. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology, 102(6), 1437-1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x
Vickers, M. D. (1968). Gamma hydroxybutyric acid: Clinical pharmacology and current status. Proceedings of the Royal Society of Medicine, 61(8), 821-824.
Volova, T. G., Boyandin, A. N., Vasiliev, A. D., Karpov, V. A., Prudnikova, S. V., Mishukova, O. V., Boyarskikh, U. A., Filipenko, M. L., Rudnev, V. P., Xuân, B. B., Dũng, V.V., & Gitelson, I. I. (2010). Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polymer Degradation and Stability, 95(12), 2350-2359. https://doi.org/10.1016/j.polymdegradstab.2010.08.023
Wang, B., Sharma-Shivappa, R. R., Olson, J. W., & Khan, S. A. (2013). Production of polyhydroxybutyrate by Alcaligenes latus using sugarbeet juice. Industrial Crops and Products, 43(1), 802-811. https://doi.org/10.1016/j.indcrop.2012.08.011
Wang, L., Wang, Z. H., Shen, C. Y., You, M. L., Xiao, J. F., & Chen, G. Q. (2010). Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials, 31(7), 1691-1698. https://doi.org/10.1016/j.biomaterials.2009.11.053
Ward, P. G., de Roo, G., & O'Connor, K. E. (2005). Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Applied and Environmental Microbiology, 71(4), 2046-2052.
Williams, S. F., & Peoples, O. P. (1996). Biodegradable plastics from plants. Chemtech, 26(9), 38-44.
Williams, S. F., Rizk, S., & Martin, D. P. (2013). Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedizinische Technik/Biomedical Engineering, 58(5), 439-452. https://doi.org/10.1515/bmt-2013-0009
Winnacker, M., & Rieger, B. (2017). Copolymers of polyhydroxyalkanoates and polyethylene glycols: recent advancements with biological and medical significance. Polymer International, 66(4), 497-503. https://doi.org/10.1002/pi.5261
Wong, P. A. L., Cheung, M. K., Lo, W.-H., Chua, H., & Yu, P. H. F. (2004). Investigation of the effects of the types of food waste utilized as carbon source on the molecular weight distributions and thermal properties of polyhydroxy-butyrate produced by two strains of microorganisms. e-Polymers, 4(1), Article 031. https://doi.org/10.1515/epoly.2004.4.1.324
Wu, C.-S. (2012). Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues. Polymer Degradation and Stability, 97(1), 64-71. https://doi.org/10.1016/j.polymdegradstab.2011.10.012
Yamane, T. (1993). Yield of poly‐D (‐) ‐3‐hydroxybutyrate from various carbon sources: A theoretical study. Biotechnology and Bioengineering, 41(1), 165-170. https://doi.org/10.1002/bit.260410122
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
Yang, L., Zhang, Y.-Y., Yang, G.-W., Xie, R., & Wu, G.-P. (2021). Controlled ring-opening polymerization of β-butyrolactone via bifunctional organoboron catalysts. Macromolecules, 54(12), 5509-5517.
Yao, Y.-C., Zhan, X.-Y., Zhang, J., Zou, X.-H., Wang, Z.-H., Xiong, Y.-C., & Chen, G.-Q. (2008). A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials, 29(36), 4823-4830. https://doi.org/10.1016/j.biomaterials.2008.09.008
Yİlmaz, M., & Beyatli, Y. (2005). Poly-β-hydroxybutyrate (PHB) production by a Bacillus cereus M5 strain in sugarbeet molasses. Sugar Industry, 130(2), 109-112.
You, M., Peng, G., Li, J., Ma, P., Wang, Z., Shu, W., Peng, S. & Chen, G.-Q. (2011). Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials, 32(9), 2305-2313. https://doi.org/ 10.1016/j.biomaterials.2010.12.009
Yu, P. H. F., Chua, H., Huang, A. L., Lo, W. H., & Ho, K. P. (1999). Transformation of industrial food wastes into polyhydroxyalkanoates, Water Science and Technology, 40(1), 365-370. https://doi.org/10.1016/S0273-1223(99)00402-3
Zeller, M. A., Hunt, R., Jones, A., & Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science, 130(5), 3263-3275. https://doi.org/10.1002/app.39559
Zhou, J., Liu, J., Cheng, C. J., Patel, T. R., Weller, C. E., Piepmeier, J. M., Jiang, Z., & Saltzman, W. M. (2012). Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery. Nature Materials, 11(1), 82-90. https://doi.org/10.1038/nmat3187