Combined Effect of Acid Salts with Clove and Cinnamon Oils on Controlling of Postharvest Decay in Carrot

Main Article Content

Suree Nanasombat
Saranya Phunpruch

Abstract

Fungal decay in carrots is a serious problem during postharvest storage. The present work aimed to study the antifungal effect of ammonium carbonate (AC) or potassium metabisulfite (PM) in combination with cinnamon or clove oils on delaying carrot decay caused by black rot mold during chill storage. In vitro trials were conducted to determine the antifungal activity of those acid salts, essential oils and their combinations against selected fungi isolated from carrots. Alternaria sp. C7D7 isolated from carrots was inhibited by AC and PM at 0.5-1.0% w/v minimum inhibitory concentration (MIC), while cinnamon and clove oils possessed strong anti-Alternaria effect with 0.025% w/v MIC. The combination of AC or PM at 0.25-0.5% w/v with cinnamon or clove oils at 0.04-0.25% w/v in potato dextrose agar produced a 100% antifungal index. Synergy testing by the checkerboard method showed that the combination of AC and cinnamon oil had partial synergistic effects against the mold.  The optimum concentrations of combined AC or PM and cinnamon or clove oil were selected to formulate dipping solutions for carrot treatments. Their effect on controlling black rot decay in carrots during chill storage was investigated. The treatment with the dipping solutions consisting of combined 0.5% AC with 0.25% cinnamon oil or 1% AC alone caused a lower percentage of black rot decay (13.9-19.4% decay) in carrots compared to the others during storage at 5°C for 10 weeks. These findings show the usefulness of cinnamon oil and AC or their combination on delaying black rot decay in carrots.

Article Details

Section
Original Research Articles

References

Ahamad, L., Khan, A. A., Khan, M., Farid, O., & Alam, M. (2023). Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles (MgO NPs) on the development, physiology, and infection of carrot (Daucus carota L.) with Alternaria leaf blight (ALB): Molecular docking. Journal of Integrative Agriculture, 22, 3069-3080, https:// doi.org/10.1016/j.jia.2023.02.034

Akhtari, K., Ashirbad, M., & Bihari, S. K. (2016). Studies on fungi associated with storage rot of carrot (Daucus carota L.) and radish (Raphanus sativas L.) in Odisha, India. Scholars Academic Journal of Biosciences, 4(10B), 880-885. https://doi.org/10.36347/sajb.2016.v04i10.015

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

Andrew, M., Peever, T., & Pryor, B. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101, 95-109. https://doi.org/10.3852/08-135

Arslan, U. 2015. Evaluation of antifungal activity of sulfur-containing salts against phytopathogenic fungi. Fresenius Environmental Bulletin, 24(5), 1879-1886.

Bakr, J. G., Khalid, S. A., Khafaga, N. I. M., Yassien, N. A., & Zaki, H. M. B. A. (2024). Impact of using cinnamon (Cinnamomum verum) essential oil and its pectin-chitosan nano-emulsion on survival of Aspergillus flavus and total aflatoxin inhibition in beef burger patties. Food Control, 159, Article 110294. https://doi.org/10.1016/j.foodcont.2024.110294

Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: as in silico approach reveals potential PCR biases. BMC Microbiology, 10, Article 189. https://doi.org/10.1186/1471-2180-10-189

Clemente, I., Aznar, M., & Nerín, C. (2019). Synergistic properties of mustard and cinnamon oils for the inactivation of foodborne moulds in vitro and on Spanish bread. International Journal of Food Microbiology, 298, 44-50. https://doi.org/10.1016/j.ijfoodmicro.2019.03.012

Collins, C. H., Lyne, P. M., & Grange, J. M. (2001). Collin and Lyne’s microbiological methods. Oxford University Press.

Condurso, C., Cincotta, F., Tripodi, G., Merlino, M., Giarratana, F., & Verzera, A., (2020). A new approach for the shelf-life definition of minimally processed carrots. Postharvest Biology and Technology, 163, Article 111138. https://doi.org/10.1016/j.postharvbio.2020.111138

Deng, J. X., Paul, N. C., Park, M. S., & Yu, S. H. (2013). Molecular characterization, morphology, and pathogenicity of Alternaria panax from araliaceous plants in Korea. Mycological Progress, 12, 383-396. https://doi.org/10.1007/s11557-012-0844-8

Deresa, E. M., & Diriba T. F. (2023). Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon, 9(3), Article e13810. https:// doi.org/10.1016/j.heliyon.2023.e13810

Eshel, D., Regev, R., Orenstein, J., Droby, S., & Gan-Mor, S. (2009). Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of black root of carrot. Postharvest Biology and Technology, 54, 48-52. https://doi.org/10.1016/j.postharvbio.2009.04.011

Gadhi, M. A., Nizamani, Z. A., Jatoi, G. H., Abro, M. A., Keerio, A. U., Poussio, G. B., & Qiu, D. (2020). In vitro efficacy of bio-control agent and essential oils against leaf blight of chickpea caused by Alternaria alternata. Acta Ecologica Sinica, 40, 166-171. https://doi.org/10.1016/j.chnaes.2018.11.002

Gurtler, J. B., & Garner, C. M. (2022). A review of essential oils as antimicrobials in foods with special emphasis on fresh produce. Journal of Food Protection, 85(9), 1300-1319. https://doi.org/10.4315/JFP-22-017

Horita, H., & Hatta, Y. (2016). Sour rot of carrot caused by Geotrichum candidum in Japan. Journal of General Plant Pathology, 82(1) 65-68. https://doi.org/10.1017/s10327-015-0638-3

Hu, F., Tu, X.-F., Thakur, K., Hu, F., Li, X.-L., Zhang, Y.-S., Zhang J.-G., & Wei, Z.-J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. Food and Chemical Toxicology, 134, Article 110821. https://doi.org/10.1016/j.fct.2019.110821

Jackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonca, A., Cooper, B., Thomas-Popo, E., Gordon, K., & London, L. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. Journal of Food Protection, 86, Article 100025. https://doi.org/10.1016/j.jfp.2022.100025

Ji, H., Kim, H., Beuchat, L. R., & Ryu, J.-H. (2019). Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. International Journal of Food Microbiology, 291, 104-110. https://doi.org/10.1016/j.ijfoodmicro.2018.11.023

Kameche, K., Amrani, S., Mouzaoui, S., & Aït-Amar, H. (2022). Biodegradation of diazo dye Evans blue by four strains of Streptomyces isolated from soils of Algeria. Biocatalysis and Agricultural Biotechnology, 46, Article 102529. https://doi.org/10.1016/j.bcab.2022.102529

Karaca, H., Pérez-Gago, M. B., Taberner, V., & Palou, L. (2014). Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology, 179, 72-79. https://doi.org/10.1016/j.ijfoodmicro.2014.03.027

Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D.-H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety _ A review. Food Control, 73(part B), 1426-1444. https://doi.org/10.1016/j.foodcont.2016.11.010

Khetabi, A. E., Lahlali, R., Ezrari, S., Radouane, N., Lyousfi, N., Banani, H., Askarne, L., Tahiri, A., Ghadraoui, L. E., Belmalha, S., & Barka, E. A. (2022). Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: a review. Trends in Food Science and Technology, 120, 402-417. https://doi.org/10.1016/j.tifs.2022.01.009

Kolaei, E. A., Tweddell, J. R., & Avis, T. J. (2012). Antifungal activity of sulfur-containing salts against the development of carrot cavity spot and potato dry rot. Postharvest Biology and Technology, 63, 55-59. https://doi.org/10.1016/j.postharvbio.2011.09.006

Laishram, S., Pragasam, A. K., Bakthavatchalam, Y. D., & Veeraraghavan, B. (2017). An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian Journal of Medical Microbiology, 35(4), 445-468. https://doi.org/10.4103/ijmm.IJMM_17_189

Landschoot, S., Vandecasteele, M., De Baets, B., Höfte, M., Audenaert, K., & Haesaert, G. (2017). Identification of A. arborescens, A. grandis, and A. protenta as new members of the European Alternaria population on potato. Fungal Biology, 121, 172-188. https://doi.org/10.1016/j.funbio.2016.11.005.

Larsen, H., & Wold, A.-B. (2016). Effect of modified atmosphere packaging on sensory, chemical parameters and shelf life of carrot roots (Daucus carota L.) stored at chilled and abusive temperatures. Postharvest Biology and Technology, 114, 76-85.

Lawrence, D. P., Rotondo, F., & Gennibal, P. B. (2016). Biodiversity and taxonomy of the pleomorphic geus Alternaria. Mycological Progress, 15(1), 1-22. https://doi.org/10.1007/s11557-015-1144-x

Martínez-Blay, V., Taberner, V., Pérez-Gago, M. B., & Palou, L. (2020). Control of major citrus postharvest diseases by sulfur-containing food additives. International Journal of Food Microbiology, 330, Article 108713. https://doi.org/10.1016/j.ijfoodmicro.2020.108713

Matrose, N. A., Obikeze, K., Belay, Z. A., & Caleb, O. J. (2021). Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. Food Biosciences, 41, Article 100840. https://doi.org/10.1016/j.fbio.2020.100840

Nanasombat, S., & Wimuttigosol, P. (2011). Antimicrobial and antioxidant activity of spice essential oils. Food Science and Biotechnology, 20(1), 45-53. https://doi.org/10.1007/s10068-011-0007-8

Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseased of fresh horticultural produce. Postharvest Biology and Technology, 122, 41-52. https://doi.org/10.1016/j.postharvbio.2016.04.017

Papoutsis, K., & Edelenbos, M. (2021). Postharvest environmentally and human-friendly pre-treatment to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends in Food Science and Technology, 112, 88-98. https://doi.org/10.1016/j.tifs.2021.03.038

Pekmezovic, M., Rajkovic, K., Barac, A., Senerović, L., & Arsenijevic, V. A. (2015). Development of kinetic model for testing antifungal effect of Thymus vulgaris L. and Cinnamomum cassia L. essential on Aspergillus flavus spores and application for optimization of synergistic effect. Biochemical Engineering Journal, 99, 131-137. https://doi.org/10.1016/j.bej.2015.03.024

Peralta-Ruiz, Y., Tovar, C. G., Sinning-Mangonez, A., Bermont, D., Cordero, A. P., Paparella, A., & Chaves-López, C. (2020). Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. International Journal of Food Microbiology, 326, Article 108649. https://doi.org/10.1016/j.ijfoodmicro.2020.108649

Perrin, F., Dubois-Laurent, C., Gibon, Y., Citerne, S., Huet, S., Suel, A., Clerc, V. L., Briard, M., Hamama, L., Peltier, D., Gagné, S., & Geoffriau, E. (2017). Combined Alternaria dauci infection and water stresses impact carotenoid content of carrot leaves and roots. Environmental and Experimental Botany, 143, 125-134. https://doi.org/10.1016/j.envexpbot.2017.09.004

Pitt J. I., & Hocking, A. D. (1985). Fungi and food spoilage. Academic Press.

Ranjitha, K., Rao, D. V., Shivashankara, K. S., Oberoi, H. S., Roy, T. K., & Bharathamma, H. (2017). Shelf-life extension and quality retention in fresh-cut carrots coated with pectin. Innovative Food Science and Emerging Technologies, 42, 91-100. https://doi.org/10.1016/j.ifset.2017.05.013

Ribeiro-Santos, R., Andrade, M., Madella, D., Martinazzo, A. P., Moura, L. D. A. G., de Melo, N. R., & Sanches-Silva, A. (2017). Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends in Food Science & Technology, 62, 154-169. https://doi.org/10.1016/j.tifs.2017.02.011

Ribes, S., Fuentes, A., Talens, P., & Barat, J. M. (2018). Combination of different antifungal agents in oil-in-water emulsions to control strawberry jam spoilage. Food Chemistry, 239, 704-711. https://doi.org/10.1016/j.foodchem.2017.07.002

Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Martínez, P. G., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82-94. https://doi.org/10.1016/j.postharvbio.2016.08.003

Rosato, A., Vitali, C., de Laurentis, N., Armenise, D., & Antonietta Milillo, M. (2007). Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine, 14, 727-732. https://doi.org/10.1016/j.phymed.2007.01.005

Samson, R. A., Hoekstra, E. S., & Frisvad, J. C. (2004). Introduction to Food and Airborne Fungi. (7th ed.) Centraalbureau voor Schimmelcultures

Scariot, F. J., Delamare, A. P. L., & Echeverrigaray, S. (2022). The effect of chlorothalonil on Saccharomyces cerevisiae under alcoholic fermentation. Pesticide Biochemistry and Physiology, 182, Article 105032. https//doi.org/10.1016/j.pestbp.2021.105032

Seljåsen, R., Kritensen, H. L., Lauridsen, C., Wyss, G. S., Kretzschmar, U., Birlouez-Aragone, I., & Kahl J. (2013). Quality of carrots as affected by pre- and postharvest factors and processing. Journal of the Science of Food and Agriculture, 93, 2611-2626. https://doi.org/10.1002/jsfa.6189

Sethunga, M., Ranasinghe, M. M. K. D., Ranaweera, K. K. D. S., Munaweera, I., & Gunathilake, K. D. P. P. (2023). Synergistic antimicrobial activity of essential oils and oleoresins of cinnamon oil (Cinnamomum zeylanicum), clove bud (Syzygium aromaticum) and ginger (Zingiber officinale). Biocatalysis and Agricultural Biotechnology, 51, Article 102800. https//doi.org/10.1016/j.bcab.2023.102800

Soto-Muñoz, L., Taberner, V., de la Fuente, B., Jerbi, N., & Palou, L. (2020). Curative activity of postharvest GRAS salt treatments to control citrus sour rot caused by Geotrichum citri-aurantii. International Journal of Food Microbiology, 335, Article 108860. https://doi.org/10.1016/j.ijfoodmicro.2020.108860

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027. https://doi.org/10.1093/molbev/msab120

Tournas, V., Stack, M. E., Mislivec, P. B., Koch, H. A., & Bandler, R. (2001). Bacteriological analytical manual chapter 18: yeasts, molds, and mycotoxins. https://www.fda.gov/ media/183581/download?attachment

Türkkan, M. (2013). Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Journal of Agricultural Sciences, 19, 178-187. https://doi.org/10.1501/Tarimbil_0000001243

US FDA. (2024). Code of federal regulation. 21 CFR Part 182 – Substances Generally Recognized as Safe. https://www.ecfr.gov/current/title-21/chapter-1/subchapter-B/part-182

Usall, J., Ippolito, A., Sisquella, M., & Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122, 30-40. https:// doi.org/10.1016/j.postharvbio.2016.05.002

Vilaplana, R., Alba, P., & Valencia-Chamorro, S. (2018). Sodium bicarbonate salts for the control of postharvest black rot disease in yellow pitahaya (Selenicereus megalanthus). Crop Protection, 114, 90-96. https://doi.org/10.1016/j.cropro.2018.08.021

Wang, F., Saito, S., Machailide T. J., & Xiao C.-L. (2021). Phylogenetic, morphological, and pathogenic characterization of Alternaria species associated with fruit rot of Mandarin in California. Plant Disease, 105(9), 2606-2617. https://doi.org/10.1094/PDIS-10-20-2145-RE

Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75, 171-212. https://doi.org/10.3114/sim0015

Xie, Y., Huang, Q., Wang, Z., Cao, H., & Zhang, D. (2017). Structure-activity relationships of cinnamaldehyde and eugenol derivatives against plant pathogenic fungi. Industrial Crops and Products, 97, 388-394. https://doi.org/10.1016/j.indcrop.2016.12.043

Xie, Y., Yang, Z., Cao, D., Rong, F., Ding, H., & Zhang, D. (2015). Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (clove). Industrial Crops and Products, 77, 780-786. https://doi.org/10.1016/j.indcrop.2015.09.044

Xu, L., Tao, N., Yang, W., & Jing, G. (2018). Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Industrial Crops and Products, 112, 427-433. https//doi.org/10.1016/j.bcab.2022.102529

Yooussef, M. M., Pham, Q., Achar, P.N., & Sreenivasa, M. Y. (2016). Antifungal activity of essential oils on Aspergillus parasiticus isolated from peanuts. Journal of Plant Protection Research, 56(2), 139-142. https://doi.org/10.1515/jppr-2016-0021

Zhang, Y., Wei J, Yuan, Y., & Yue, T. (2019). Diversity and characterization of spoilage-associated phychrotrophs in food in cold chain. International Journal of Food Microbiology, 290, 86-95. https://doi.org/10.1016/j.ijfoodmicro.2018.09.026

Zhu, X. Q., & Xiao, C.L. (2015). Phylogenetic, morphological, and pathogenic characterization of Alternaria species associated with fruit rot of blueberry in California. Phytopathology, 105, 1555-1567. https://doi.org/10.1094/PHYTO-05-15-0122-R