The Effects of Different Plant Growth Regulators and Nutrient Solutions on Leaf Bud Propagation in Different Cassava Varieties
Main Article Content
Abstract
Cassava mosaic virus is a growing threat to cassava cultivation, and the rapid propagation of disease-free cassava stems offers an alternative approach to producing planting material. This study investigated the effects of different plant growth regulators and nutrient media on leaf bud propagation among different cassava varieties. A 3 x 4 factorial with a randomized complete block design (RCBD) was used with three replications. Three cassava varieties, Kasetsart 50 (KU50), Rayong 9 (RY9), and Huay Bong 60 (HB60) were assigned as factor A, and four different media, i.e., control treatment (distilled water), indole-3-butyric acid (IBA) at 500 mg/L, Semi-Autotrophic Hydroponic (SAH) nutrient solution, and IBA+SAH, were assigned as factor B. Data were recorded for growth and survival traits at 30 days. The results showed that the RY9 variety exhibited superior growth parameters, whereas the KU50 and HB60 varieties showed a higher survival rate. Applying IBA, alone or with SAH, negatively affected cassava plantlet growth and survival rate. On the other hand, applying SAH alone yielded results comparable to the control treatment, significantly differing from the IBA and IBA+SAH treatments. This study also noted that IBA applications enhanced root traits in the RY9 variety but not in other varieties. The HB60 variety outperformed the survival rates and dry shoot weights of RY9 and KU50 under SAH treatment. This finding can be used to select an effective method for leaf bud multiplication in response to the demand for disease-free cassava planting materials.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abdul‐Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria1. Crop Science, 13(6), 630-633. https://doi.org/10.2135/cropsci1973.0011183x001300060013x
Chant, S. R., & Marden J. A. (1959). A method for the rapid propagation of cassava cuttings. Tropical Agriculture, 35 (3), 195-199.
Chiewchankaset, P., Thaiprasit, J., Kalapanulak, S., Wojciechowski, T., Boonjing, P., & Saithong, T. (2022). Effective metabolic carbon utilization and shoot-to-root partitioning modulate distinctive yield in high yielding cassava variety. Frontiers in Plant Science, 13, Article 832304. https://doi.org/10.3389/fpls.2022.832304
Choi, I., Kang, C., Hyun, J., Lee, C., & Park, K. (2013). Mineral compositions of Korean wheat cultivars. Preventive Nutrition and Food Science, 18(3), 214-217. https://doi.org/10.3746/pnf.2013.18.3.214
de Oliveira, E. J., de Oliveira, S. A. S., Otto, C., Alicai, T., de Freitas, J. P. X., Cortes, D. F. M., Pariyo, A., Liri, C., Adiga, G., Balmer, A., Klauser, D., & Robinson, M. (2020). A novel seed treatment-based multiplication approach for cassava planting material. PLoS ONE, 15(3), Article e0229943. https://doi.org/10.1371/journal.pone.0229943
El-Sharkawy, M. (2006). International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica, 44(4), 481-512. https://doi.org/10.1007/s11099-006-0063-0
Ewert, F. (2004). Modelling plant responses to elevated CO2: How important is leaf area index?. Annals of Botany, 93(6), 619-627. https://doi.org/10.1093/aob/mch101
Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894-904. https://doi.org/10.1111/plb.13303
Graziosi, I., Minato, N., Alvarez, E., Ngo, D. T., Hoat, T. X., Aye, T. M., Pardo, J. M., Wongtiem, P., & Wyckhuys, K. A. G. (2016). Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs. Pest Management Science, 72(6), 1071-1089. https://doi.org/10.1002/ps.4250
Grossnickle, S. C. (2012). Why seedlings survive : influence of plant attributes. New Forests, 43(5-6), 711-738. https://doi.org/10.1007/s11056-012-9336-6
Grossnickle, S. C., & MacDonald, J. E. (2017). Why seedlings grow: influence of plant attributes. New Forests, 49(1), 1-34. https://doi.org/10.1007/s11056-017-9606-4
Hareesh, P. S., Resmi, T. R., Sheela, M. N., & Makeshkumar, T. (2023). Cassava mosaic disease in South and Southeast Asia: Current status and prospects. Frontiers in Sustainable Food Systems, 7, Article 1086660. https://doi.org/10.3389/fsufs.2023.1086660
Hossain, S., Ford, R., McNeil, D., Pittock, C., & Panozzo, J. F. (2010). Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Australian Journal of Crop Science, 4(2), 126-135.
Hular-Bograd, J., Sarobol, E., Rojanaridpiched, C., & Sriroth, K. (2011). Effect of supplemental irrigation on reducing cyanide content of cassava Variety Kasetsart 50. Witthayasan Kasetsat Witthayasat, 45(6), 985-994.
Javier, R. R., & Mamicpic N. G. (1978). The effect of growth regulators on root and shoot production and on yield of cassava (Manihot esculenta, Crantz). Philippine Journal of Crop Science, 3, 90-102.
Kassambara, A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra (Vol. 2). STHDA.
Kengkanna, J., Jakaew, P., Amawan, S., Busener, N., Bucksch, A., & Saengwilai, P. (2019). Phenotypic variation of cassava root traits and their responses to drought. Applications in Plant Sciences, 7(4), Article e01238. https://doi.org/10.1002/aps3.1238
Li, S., Cui, Y., Zhou, Y., Luo, Z., Liu, J., & Zhao, M. (2017). The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture, 97(8), 2282-2290. https://doi.org/10.1002/jsfa.8287
López, J. (2012). Cassava planting materials. In B. Ospina, & H. Ceballos (Eds.). Cassava in the third millennium: Modern production, processing, use, and marketing systems (pp. 91-112). CIAT.
Mahakosee, S., Jogloy, S., Vorasoot, N., Theerakulpisut, P., Banterng, P., Kesmala, T., Holbrook, C., & Kvien, C. (2019). Seasonal variations in canopy size and yield of Rayong 9 cassava genotype under rainfed and irrigated conditions. Agronomy, 9(7), Article e362. https://doi.org/10.3390/agronomy9070362
Malik, A. I., Sophearith, S., Delaquis, E., Cuellar, W. J., Jimenez, J., & Newby, J.C. (2022). Susceptibility of cassava varieties to disease caused by Sri Lankan cassava mosaic virus and impacts on yield by use of a symptomatic and virus-free planting material. Agronomy, 12(7), Article 1658. https://doi.org/10.3390/agronomy12071658
Mao, J. P., Zhang, D., Zhang, X., Li, K., Liu, Z., Meng, Y., Lei, C., & Han, M. Y. (2018). Effect of exogenous indole-3-butanoic acid (IBA) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae, 232, 112-120. https://doi.org/10.1016/j.scienta.2017.12.013
Minato, N., Sok, S., Chen, S., Delaquis, E., Phirun, I., Le, V. X., Burra, D. D., Newby, J. C., Wyckhuys, K. A. G., & de Haan, S. (2019). Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS ONE, 14(2), Article e0212780. https://doi.org/10.1371/journal.pone.0212780
Muktar, H., Beshir, H. M., Tadesse, T., & Haile, A. (2023). Rooting performance of cassava cuttings due to the number of nodes and rooting media. Food and Energy Security, 13(1), Article e512. https://doi.org/10.1002/fes3.512
Naranjo, C., & Fallas, E. (2017). Ex vitro establishment and macro propagation of cassava (Manihot esculenta valencia) to obtain disease-free rooted plants. Acta Horticulturae, 1224, 217-220. https://doi.org/10.17660/ActaHortic.2018.1224.29
Neves, R. D. J., Souza, L. S., & Oliveira, E. J. D. (2020). A leaf bud technique for rapid propagation of cassava (Manihot esculenta Crantz). Scientia Agricola, 77(2), Article e20180005. https://doi.org/10.1590/1678-992X-2018-0005
Ntui, V. O., Uyoh, E. A., Affangideh, U., Udensi, U., & Egbonyi, J. P. (2006). Correlation and genetic variability in cassava (Manihot esculenta Crantz). Journal of Food Agriculture and Environment, 4(3/4), 147-150.
Olagunju, Y. O., Aduloju, A. O., Akin-Idowu, P. E., & Esuola, C. O. (2021). Acclimatization of tissue culture pineapple plantlet using semi-autotrophic hydroponics technique in comparison with other conventional substrates. Journal of Experimental Agriculture International, 43(11), 61-67. https://doi.org/10.9734/JEAI/2021/v43i1130757
Ogwuche, T. O., Adesanya, T. A, Diebiru-Ojo, E. M., Adetoro, N. A., Olasupo, K. T., Kumar, P. L., Aina, O. O., Iluebbey, P., Agbona, A., Parkes, E. Y., & Kulakow, P. (2018). Influence of growth nutrient and rooting hormone on survival and growth of Semi-Autotrophic Hydroponics (SAHTM) cassava plantlets. https://hdl.handle.net/10568/99473
Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. https://doi.org/10.1111/2041-210X.13384
Ou, W., Mao, X., Huang, C., Tie, W., Yan, Y., Ding, Z., Wu, C., Xia, Z., Wang, W., Zhou, S., Li, K., & Hu, W. (2018). Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculenta Crantz). Frontiers in Physiology, 9, Article 17. https://doi.org/10.3389/fphys.2018.00017
Pacholczak, A., Ilczuk, A., Jacygrad, E., & Jagiello-Kubiec, K. (2012). Effect of IBA and biopreparations on rooting performance of Cotinus coggygria Scop. Acta Horticulturae, 990, 383-389. https://doi.org/10.17660/ActaHortic.2013.990.48
Pateña, L. F, & Barba, R. C. (1979). Rapid propagation of cassava by leaf-bud cuttings. Philippine Journal of Crop Science, 4(2), 53-62.
Pelemo, O., Benjamin, G., Adejumobi, I., Olusola, T., Odom-Kolombia, O., Adeosun, T., Edemodu, A., Matsumoto, R., Paterne, A., Adebola, P., & Asfaw, A. (2019). Semi-autotrophic hydroponics: A potential seed system technology for reduced breeding cycle and rapid quality seed delivery. International Institute of Tropical Agriculture.
Pinto, J. R., Davis, A. S., Leary, J. J. K., & Aghai, M. M. (2015). Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems. New Forests, 46, 855-867. https://doi.org/10.1007/s11056-015-9492-6
Polat, A. A., & Caliskan, O. (2006). Effect of indole butyric acid (IBA) on rooting of cutting in various pomegranate genotypes. Acta Horticulturae, 818, 187-192. https://doi.org/10.17660/ActaHortic.2009.818.27
Poorter, L., & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87(7), 1733-1743.
Prammanee, S., Kamprerasart, K., Salakan, S., & Sriroth, K. (2010). Growth and starch content evaluation on newly released cassava cultivars, Rayong 9, Rayong 7 and Rayong 80 at different harvest times. Agriculture and Natural Resources, 44(4), 558-563.
Santanoo, S., Vongcharoen, K., Banterng, P., Vorasoot, N., Jogloy, S., Roytrakul, S., & Theerakulpisut, P. (2022). Physiological and proteomic responses of cassava to short-term extreme cool and hot temperature. Plants, 11(17), Article 2307. https://doi.org/10.3390/plants11172307
Santanoo, S., Vongcharoen, K., Banterng, P., Vorasoot, N., Jogloy, S., Roytrakul, S., & Theerakulpisut, P. (2020). Canopy structure and photosynthetic performance of irrigated cassava genotypes growing in different seasons in a tropical Savanna climate. Agronomy, 10(12), Article 2018. https://doi.org/10.3390/agronomy10122018
Saokham, K., Hemniam, N., Roekwan, S., Hunsawattanakul, S., Thawinampan, J., & Siriwan, W. (2021). Survey and molecular detection of Sri Lankan cassava mosaic virus in Thailand. PLoS ONE, 16(10), Article e0252846. https://doi.org/10.1371/journal.pone.0252846
Schoffel, A., Lopes, S. J., Koefender, J., Camera, J. N., Golle, D. P., & Lúcio, A. D. (2022). Characteristics and production of cassava stem cuttings for rapid multiplication method. Holos, 2, Article e10326. https://doi.org/10.15628/holos.2021.10326
Šípošová, K., Kollárová, K., Lišková, D., & Vivodová, Z. (2019). The effects of IBA on the composition of maize root cell walls. Journal of Plant Physiology, 239, 10-17. https://doi.org/10.1016/j.jplph.2019.04.004
TTDI. (2006a). Cassava variety characteristics. The Thai Tapioca Development. https://tapiocathai.org/English/K2_e.html.
TTDI. (2006b). Hauy Bong 60 (HB60). The Thai Tapioca Development. https://tapiocathai.org/English/K3_e.html
Vichukit, V., Rodjanaridpiched, C., & Poonsaguan, P. (2004). Huay Bong 60: New developed Thai cassava (Manihot esculenta Crantz) variety with improved starch yield and quality. In Abstracts of sixth international scientific meeting of the cassava biotechnology network (p. 192). CIAT.
Vongcharoen, K., Santanoo, S., Banterng, P., Jogloy, S., Vorasoot, N., & Theerakulpisut, P. (2019). Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava 'Rayong 9' under irrigated and rainfed conditions. Photosynthetica, 57(1), 268-285. http://doi.org/10.32615/ps.2019.027