A Simplified Combustion Technique to Synthesize 0.1BLTO-0.9CZFO Nano Powders and Composite Ceramics with a High Magnetoelectric Coefficient
Main Article Content
Abstract
Nano powders and high-performance composite ceramics of 0.1Ba0.5La0.5TiO3-0.9Co0.8Zn0.2Fe2O4 (0.1BLTO-0.9CZFO) were successfully synthesized using a simplified combustion technique, using glycine as the fuel and a short process time with one calcination step. The effect of the firing temperature on the phase formation, microstructure, and density, and the optical, electrical, magnetic, and magnetoelectric properties of the ceramics were investigated. The synthesized powders were calcinated at temperatures between 600 and 1000oC for 2 h and the ceramics were sintered at temperatures in the range of 1200 to 1400oC for 2 h. The 0.1BLTO-0.9CZFO composite powder produced with a calcining temperature of 800oC, for 2 h, had a pure phase and nano sized particles (45 nm) and showed an energy band gap (Eg) of 4.85 eV and excellent magnetic properties (Ms =90.54 emu/g, Mr = 29.87 emu/g and Hc = 310 Oe). The 0.1BLTO-0.9CZFO composite ceramics showed a pure phase in all samples. The highest %phase of BLTO was 18.54%, and this was obtained with a sintering temperature at 1300oC that formed a well-packed microstructure and also gave the highest density (5.75 g/cm3). Excellent ferroelectric properties (Pmax = 1.59 μC/cm2, P10 = 0.21 μC/cm2, Ec = 9.40 kV/cm), magnetic properties (Ms = 87.31 emu/g, Mr = 20.42 emu/g, Hc = 182 Oe), and magnetoelectric coefficients (αME = 6.74 mV/cm Oe) were also obtained for the sample sintered at 1300oC for 2 h. The 0.1BLTO-0.9CZFO composite ceramics synthesized by the simplified combustion technique showed higher magnetic properties than those synthesized by conventionally sintered ceramics.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ahamed, M., & Khan, M. A. M. (2023). Enhanced photocatalytic and anticancer activity of Zn-doped BaTiO3 nanoparticles prepared through a green approach using banana peel extract. Catalysts, 13(6), Article 985, https://doi.org/10.3390/catal13060985
Chaiworn, P., Kaewja, S., Wongrat, E., Wichasilp, C., & Tubtimtae, A. (2024), Structural, optical, and electrical analysis of tailoring Bi2-xSbxTe3 thin films. Chalcogenide Letters 21(5), 423-429. https://doi.org/10.15251/CL.2024.215.423
Chavan, P. (2021). A phenomenological approach to study the magnetoelectric (ME) response of lead free magnetostrictive NiFe2O4–Piezoelectric BaZr0.2Ti0.8O3 particulate composites. Solid-State Electronics, 184, Article 108110, https://doi.org/10.1016/j.sse.2021.108110
Esha, I. N., Munny, K. N, Khan, M. N. I., & Maria, K. H. (2020). (1-x)BaTi0.5Mn0.5O3+ (x)Ni0.6Zn0.4Fe1.85Sm0.15O4 composite multiferroics: Analyzing the customizing effect on conductive and magnetic properties of BaTi0.5Mn0.5O3 by substituting Ni0.6Zn0.4Fe1.85Sm0.15O4 at different concentrations. AIP Advances, 10(12), Article 125026. https:// doi.org/10.1063/5.0028086
Esha, I. N., Toma, F. T. Z., Al-Amin, M., Khan, M. N. I., & Maria, K. H. (2018). Synthesis of type-II based (1-x)Ba0.6(Ca1/2Sr1/2)0.4Ti0.5Fe0.5O3+(x)Ni0.40 Zn0.45Cu0.15Fe1.9Eu0.1O4 composites via standard solid state reaction method and investigation of multiferroic properties. AIP Advance, 8(12), Article 125207. https://doi.org/10.1063/1.5078505
Gaber, A., Abdel-Rahim, M. A., Abdel-Latief, A. Y., & Abdel-Salam, M. N. (2014). Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. International Journal of Electrochemical Science, 9(1), 81-95. https://doi.org/10.1016/S1452-3981(23)07699-X
Gatasheh, M. K., Daoud, M. S., & Kassim, H. (2023). Bandgap narrowing of BaTiO3-based ferroelectric oxides through cobalt doping for photovoltaic applications. Materials, 16(24), Article 7528. https://doi.org/10.3390/ma16247528
Głuchowski, P., Tomala, R., Kujawa, D., Boiko, V., Murauskas, T., & Solarz, P. (2022). Insights into the relationship between crystallite size, sintering pressure, temperature sensitivity, and persistent luminescence color of Gd2.97Pr0.03ga3al2o12 powders and ceramics. The Journal of Physical Chemistry C, 126(16), 7127-7142. https://doi.org/10.1021/acs.jpcc.2c00672
Goel, R., Syal, R., Sharma, G., Singh, R. K., Dhiman, S., Singh, A. K., & Kumar, S. (2022). Magnetoelectric coupling susceptibility in novel lead-free 0-3 type multiferroic particulate composites of (1-x)Na0.5Bi0.5TiO3-(x)CoCr0.4Fe1.6O4. Materials Chemistry and Physics, 282, Article 126004. https://doi.org/10.1016/j.matchemphys.2022.126004
González-Abreu, Y., Peláiz-Barranco, A., Faloh-Gandarilla, J., Rivas-Gutierrez, A., Díaz-Castañón, S., & Guerra, J. D. S. (2023). Lanthanum-doped Bi0.5Fe0.5Co0.5Ti3O15 multiferroic Aurivillius phase with improved magnetization. Journal of Alloys and Compounds, 947, Article 169538. https://doi.org/10.1016/j.jallcom.2023.169538
Habiba, U., Esha, I. N., Kasem, M. R., Khan, M. N. I., & Maria, K. H. (2023). Exploring the coupling effect of ferromagnetic, Co0.8Zn0.2Fe2O4 with the ferroelectric, Ba0.5La0.5TiO3 at different concentrations in composite multiferroics, Journal of Magnetism and Magnetic Materials, 580, Article 170890. https://doi.org/10.1016/j.jmmm.2023.170890
Hill, N. A. (2000). Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B, 104, 6694-6709. https://doi.org/10.1021/JP000114X
Kappadan, S., Gebreab, T. W., Thomas, S., & Kalarikkal, N. (2016). Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Materials Science in Semiconductor Processing, 51, 42-47. https://doi.org/10.1016/j.mssp.2016.04.019
Köferstein, R., & Ebbinghaus, S. G. (2023). Improvement of the magnetoelectric response in NiFe2O4-Sr0.5Ba0.5Nb2O6 composites using LiNbO3 as sintering additive. Journal of the European Ceramic Society, 43(14), 6137-6144. https://doi.org/10.1016/j.jeurceramsoc.2023.06.040
Köferstein, R. Wartmann, M.-S., & Ebbinghaus, S. G. (2024). Magnetoelectric, dielectric, and magnetic investigations of multiferroic NixCo1−xFe2O4−SryBa1−yNb2O6 composites. Materials Research Bulletin, 177, Article 112860. https://doi.org/10.1016/j.materresbull.2024.112860
Kombaiah, K., Vijaya, J. J., Kennedy, L. J., Bououdina, M., Ramalingam, R. J., & Al-Lohedan, H. A. (2018). Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Materials Chemistry and Physics, 204, 410-419. https://doi.org/10.1016/j.matchemphys.2017.10.077
Kornphom, C., Saenkam, K., & Bongkarn, T. (2022). High energy-storage performance under low electric fields and excellent temperature stability of KF-modified BNT-ST-AN relaxor ferroelectric ceramics. JOM, 74, 4695-4709. https://doi.org/10.1007/s11837-022-05471-1
Kornphom, C., Saenkam, K., Jantaratana, P., Pinitsoontorn, S., & Bongkarn, T. (2023a). Investigations on the multiferroic properties of lead free BNT-BCTS:MFO ceramic composites fabricated by the solid-state combustion technique. JOM, 75, 2669-2683. https://doi.org/10.1007/s11837-023-05835-1
Kornphom, C., Saenkam, K., & Bongkarn, T. (2023b). Enhanced energy storage properties of BNT–ST–AN relaxor ferroelectric ceramics fabrication by the solid-state combustion technique. Physica Status Solidi (A), 220(10), Article 2200240, https://doi.org/10.1002/pssa.202200240
Lather, S., Gupta, A., Dalal, J., Verma, V., Tripathi, R., & Ohlan, A. (2017). Effect of mechanical milling on structural, dielectric and magnetic properties of BaTiO3-Ni0.5Co0.5Fe2O4 multiferroic nanocomposites. Ceramics International, 43(3), 3246-3251. https://doi.org/10.1016/j.ceramint.2016.11.152
Li, S., Wang, C., Shen, Q., & Zhang, L. (2019). Characterization of a BCZT/LCMO/BCZT laminated composite fabricated by plasma-activated sintering. Journal of Applied Physics, 125(7), Article 074101. https://doi.org/10.1063/1.5082260
Liu, R., Zhao, Y., Huang, R., Zhao, Y., & Zhou, H. (2010). Multiferroic ferrite/perovskite oxide core/shell nanostructures. Journal of Materials Chemistry, 20(47), 10665-10670. https://doi.org/10.1039/c0jm02602f
Madani, A., Alghamdi, M., Alamri, B., & Althobaiti, S. (2023), Structural and optical properties of Sb-BaTiO3 and Y-BaTiO3 doped ceramics prepared by solid-state reaction. Optical Materials, 137, Article 113480. https://doi.org/10.1016/j.optmat.2023.113480
Pradhan, A. K., Zhang, K., Hunter, D., Dadson, J. B., Loiutts, G. B., Bhattacharya, P., Katiyar, R., Zhang, J., Sellmyer, D. J., Roy, U. N., Cui, Y. & Burger, A. (2005). Magnetic and electrical properties of single-phase multiferroic BiFeO3. Journal of Applied Physics, 97, Article 0939031. https://doi.org/10.1063/1.1881775
Pal, M., Srinivas, A., Xavier, D., Subramanian, V., & Asthana, S. (2024). Evidence of self-biased magnetoelectric coupling in eco-friendly (Na0.41K0.09Bi0.5TiO3-Ba0.85Ca0.15Zr0.1Ti0.9O3)-(CoFe2O4) particulate composites. Journal of Magnetism and Magnetic Materials, 598, Article 172060. https://doi.org/10.1016/j.jmmm.2024.172060
Rather, M. U. D., Samad, R., Hassan, N. & Want, B. (2019). Magnetodielectric effect in rare earth doped BaTiO3-CoFe2O4 multiferroic composites. Journal of Alloys and Compounds, 794, 402-416. https://doi.org/10.1016/j.jallcom.2019.04.244
Raza, S. A., Awan, S. U., Hussain, S., Shah, S. A., Iqbal, A. M., & Hasanain, S. K. (2020). Structural, ferromagnetic, electrical, and dielectric relaxor properties of BaTiO3 and CoFe2O4 bulk, nanoparticles, and nanocomposites materials for electronic devices. Journal of Applied Physics, 128(12), Article 124101. https://doi.org/10.1063/1.5131467
Reabreang, N., Inthakume, P., Pinkhom, C., Pinitsoontorn, S., Bongkarn, T., & Kornphom, C., (2024). The simplified synthesis of Co0.6Zn0.4Fe1.7Mn0.3O4 magnetic nanopowders with high magnetization by solid-state combustion technique. Burapha Science Journal, 29(1), 99-110.
Reddy, K. D., Kumar, N. P., Xavier, D., Sowjanya, P., Subramanian, V., & Siva, C. (2024). Magnetoelectric behaviour of Pb-free Na0.5Bi0.5TiO3-Ni0.5Co0.5Fe2O4 particulate novel ceramic composites. Ceramics International, 50(7), 10402-10415. https://doi.org/10.1016/j.ceramint.2023.12.352
Rodel, J., Jo, W., Seifert, K. T. P., Anton, E.-M., Granzow, T., & Damjanovic, D. (2009). Perspective on the development of lead-free Piezoceramics. Journal of the American Ceramic Society, 92(6),1153-1177. https://doi.org/10.1111/J.1551-2916.2009.03061.X
Rosales-González, O., Sánchez-De Jesús, F., Cortés-Escobedo, C. A., & Bolarín-Miró, A. M. (2018). Crystal structure and multiferroic behavior of perovskite YFeO3. Ceramics International, 44(13), 15298-15303. https://doi.org/10.1016/J.CERAMINT.2018.05.175
Sadhukhan, S., Mitra, A., Mahapatra, A. S., Dey, C. C., Das, S., & Chakrabarti, P. K. (2022). Magnetoelectric multiferroicity in a newly derived nanocomposite system of (Y0.97Al0.03FeO3)x((Bi0.5Na0.5)0.94Ba0.06TiO3)(1− x) [x = 0.3, 0.5]. Journal of Magnetism and Magnetic Materials, 559, Article 169553. https://doi.org/10.1016/j.jmmm.2022.169553
Samghabadi, F. S., Chang, L., Khodadadi, M., Martirosyan, K. S., & Litvinov, D. (2021). Scalable, cost-efficient synthesis and properties optimization of magnetoelectric cobalt ferrite/barium titanate composites. APL Materials, 9, Article 021104. https://doi.org/10.1063/5.0036518
Shankar, S., Thakur, O. P., & Jayasimhadri, M. (2019). Conductivity behavior and impedance studies in BaTiO3-CoFe2O4 magnetoelectric composites. Materials Chemistry and Physics, 234, 110-121. https://doi.org/10.1016/j.matchemphys.2019.05.095
Sharma, S., Sharma, H., Thakura, S., Shah, J., Kotnala, R. K., & Negi, N. S. (2021). Structural, magnetic, magneto-dielectric and magneto-electric properties of (1-x) Ba0.85Ca0.15Ti0.90Zr0.10O3- (x) CoFe2O4 lead-free multiferroic composites sintered at higher temperature. Journal of Magnetism and Magnetic Materials, 538, Article 168243. https://doi.org/10.1016/j.jmmm.2021.168243
Thongon, A., Kornphom, C., Bongkarn, T., & Pinitsoontorn, S. (2024). The synthesis of MgFe2O4 magnetic powders by simplified solid-state combustion technique with using low calcination temperature. The Journal of King Mongkut’s University of Technology North Bangkok, 34(1),1-10, https://doi.org/10.14416/j.kmutnb.2023.11.007
Vandana, Goel, R., Shashikant, Singh, A. K., & Kumar, S. (2023). Response of DC biased magnetoelectric coupling in 0-3 type particulate lanthanum modified PZT-CFO composites. Materials Today Communications, 37, Article 106985. https://doi.org/10.1016/j.mtcomm.2023.106985
Wang, Y.-A., Wang, Y.-B., Rao, W., Gao, J.-X., Zhou, W.-L., & Yu, J. (2012). Electric and magnetic properties of the (1-x)Ba0.6Sr0.4TiO3-xCoFe2O4 multiferroic composite ceramics. Chinese Physics Letter, 29(6), Article 067701. https://doi.org/10.1088/0256-307X/29/6/067701