Flavonoid Extraction from Mango Peels for Nanoparticles by Green Synthesis Process
Main Article Content
Abstract
This research study explored the extraction of flavonoids from ripe and raw mango peels using different solvents (deionized water, methyl alcohol, and ethyl alcohol) over varying durations. The extracted compounds were then employed in synthesizing titanium dioxide nanoparticles (TiO2 NPs) via a green chemical process using titanium isopropoxide. Optimal extraction, yielding the highest flavonoid content, was achieved with deionized water after 3 h for ripe peels and 4 h for raw peels. The titanium dioxide nanoparticles synthesized exhibited an anatase crystal structure, as confirmed by XRD, Raman, and FTIR techniques. SEM images showed that the nanoparticles were evenly distributed and had a smooth surface. The titanium dioxide nanoparticles demonstrated stronger antibacterial activity against Escherichia coli than Staphylococcus aureus. Furthermore, raw mangoes were found to be more effective in inhibiting bacterial growth than ripe mangoes.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Álvarez-Chimal, R., & Arenas-Alatorre, J. Á. (2024). Green synthesis of nanoparticles: A biological approach. In K. Shah (Ed.). Green chemistry for environmental sustainability - prevention-assurance-sustainability (P-A-S) approach (pp. 85-102). IntechOpen. https://doi.org/10.5772/intechopen.1002203
Bruno, M. E., Tasat, D. R., Ramos, E., Paparella, M. L., Evelson, P., Rebagliati, R. J., Cabrini, R. L., Guglielmotti, M. B., & Olmedo, D. G. (2014). Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. Journal of Biomedical Materials Research, 102(5), 1439-1448. https://doi.org/10.1002/jbm.a.34822
Choudhury, B., Dey, M., & Choudhury, A. (2013). Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. International Nano Letters, 3, Article 25. https://doi.org/10.1186/2228-5326-3-25
Chougala, L., Yatnatti, M. S., Linganagoudar, R. K., Kamble, R. R., & Kadadevarmath, J. S. (2017). A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Journal of Nano- and Electronic Physics, 9(4). Article 04005. https://doi.org/10.21272/jnep.9(4).04005
da Silva, B. L., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177, 440-447. https://doi.org/10.1016/j.colsurfb.2019.02.013
Duthie, G., & Crozier, A. (2000). “Plant-derived phenolic antioxidants. Current Opinion in Lipidology, 11(1), 43-47. https://doi.org/10.1097/00041433-200002000-00007
Garcia-Mendoza, M. P., Paula, J. T., Paviani, L. C., Cabral, F. A., & Martinez-Correa, H. A. (2015). Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT - Food Science and Technology, 62(1), 131-137. https://doi.org/10.1016/j.lwt.2015.01.026
Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green synthesis of nanomaterials. Nanomaterials, 11(8), Article 2130. https://doi.org/10.3390/nano11082130
Kernazhitsky, L., Shymanovska, V., Gavrilko, T., Naumov, V., Fedorenko, L., Kshnyakin, V., & Baran, J. (2014). Laser-excited excitonic luminescence of nanocrystalline TiO2 powder. Ukrainian Journal of Physics, 59(3), 246-253. https://doi.org/10.15407/ujpe59.03.0246
Khalid, A., Ahmad, P., Alharthi, A. I., Muhammad, S., Khandaker, M. U., Faruque, M. R. I., Din, I. U., & Alotaibi, M. A. (2021). Unmodified titanium dioxide nanoparticles as a potential contrast agent in photon emission computed tomography. Crystals, 11(2), Article 171. https://doi.org/10.3390/cryst11020171
Kučuk, N., Primožič, M., Kotnik, P., Knez, Ž., & Leitgeb, M. (2024). Mango peels as an industrial by-product: A sustainable source of compounds with antioxidant, enzymatic, and antimicrobial activity. Foods 13(4), Article 553. https://doi.org/10.3390/foods13040553
Lees, D. H., & Francis, F. J. (1971). Quantitative methods for anthocyanins. Journal of Food Science, 36(7), 1056-1060. https://doi.org/10.1111/j.1365-2621.1971.tb03345.x
Nasrollahzadeh, M., & Sajadi, S. M. (2015). Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability. Ceramics International, 41(10), 14435-14439. https://doi.org/10.1016/j.ceramint.2015.07.079
Pietta, P. G (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035-1042. https://doi.org/10.1021/np9904509
Rigby, B., & Dana, M. N. (1972). Flower opening, pollen shedding, stigma receptivity and pollen tube growth in the cranberry. HortScience, 7(1), 84-85. https://doi.org/ 10.21273/HORTSCI.7.1.84
Rodríguez-Jiménez, R.-A., Panecatl-Bernal, Y., Carrillo-López, J., Méndez-Rojas, M.-Á., Romero-López, A., Pacio-Castillo, M., Vivalso, I., Morales-Sánchez, A., Arce, R. D., Caram, J., Villanueva-Cab, J., & Alvarado, J. (2021). Influence of ethanolic plant extracts on morphology and size distribution of sol-gel prepared TiO2 nanoparticles. ChemistrySelect, 6(16), 3958-3968. https://doi.org/10.1002/slct.202100494
Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Velayutham, K., Thomas, J., Venkatesan, J., & Kim, S.-K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968-976. https://doi.org/10.1016/S1995-7645(14)60171-1
Serov, D. A., Gritsaeva, A. V., Yanbaev, F. M., Simakin, A. V., & Gudkov, S. V. (2024). Review of antimicrobial properties of titanium dioxide nanoparticles. International Journal of Molecular Sciences, 25(19), Article 10519. https://doi.org/10.3390/ijms251910519
Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16, Article 84. https://doi.org/10.1186/s12951-018-0408-4
Yang, N., & Li, W.-H. (2013). Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics, Industrial Crops and Products, 48, 81-88. https://doi.org/10.1016/j.indcrop.2013.04.001
Yusof, N. A. A., Zain, N. M., & Pauzi, N. (2019). Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. International Journal of Biological Macromolecules, 124, 1132-1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228