Improving Monitored PM2.5 Data from Low-Cost Sensors in Chiang Mai, Thailand: Utilizing a Nonlinear Regression Modeling Approach

Main Article Content

Natthanidnan Sricharoen
Titaporn Supasri
Patrinee Traisathit
Sukon Prasitwattanaseree
Pimwarat Srikummoon
Jeerasak Longmali

Abstract

Air pollution, particularly particulate matter ≤ 2.5 µm (PM2.5), is a significant global concern for human health. Technological advances in light-scattering low-cost sensors (LCSs) have facilitated extensive deployment of these devices, enhancing the spatial and temporal resolution of air quality monitoring networks beyond traditional stations. However, LCS measurements often face systematic biases and uncertainties due to technological limitations. This study aimed to calibrate LCS PM2.5 data collected from February 14 to July 31, 2022, in Chiang Mai, Thailand, against reference measurements from the Pollution Control Department (PCD). Two nonlinear regressions, generalized additive model (GAM) and random forest (RF), were employed with linear regression (LR) as the baseline model. Model performance was evaluated using 10-fold and holdout cross-validation and metrics including R², RMSE, MAE, and MAPE. GAM exhibited superior performance compared to LR and RF when incorporating environmental and temporal factors such as temperature, humidity, month, and time (R² = 0.915, RMSE = 5.084 µg/m³). The LR model showed comparable performance (R² = 0.900, RMSE = 5.494 µg/m³), while RF performed well with environmental factors alone (R² = 0. 892, RMSE = 5.742 µg/m³). The GAM calibration significantly reduced MAPE to 17%, followed by LR (19%) and RF (21%). This study demonstrates that the integration of both environmental and temporal variables within the GAM framework is crucial for accurately calibrating LCS PM2.5 data in northern Thailand, considering the region's distinct atmospheric characteristics. Our study underscores the necessity of including environmental and temporal factors in GAM to calibrate LCS-collected PM2.5 data in northern Thailand.

Article Details

Section
Original Research Articles

References

Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8, 166-175. https://doi.org/10.1007/s13181-011-0203-1

Anik, M. T. H., Ebrahimabadi, M., Danger, J.-L., Guilley, S., & Karimi, N. (2021). Reducing aging impacts in digital sensors via run-time calibration. Journal of Electronic Testing, 37, 653-673. https://doi.org/10.1007/s10836-021-05976-8

Bai, L., Huang, L., Wang, Z., Ying, Q., Zheng, J., Shi, X., & Hu, J. (2020). Long-term field evaluation of low-cost particulate matter sensors in Nanjing. Aerosol and Air Quality Research, 20, 242-253. https://doi.org/10.4209/aaqr.2018.11.0424

Chantara, S., Thepnuan, D., Wiriya, W., Prawan, S., & Tsai, Y. I. (2019). Emissions of pollutant gases, fine particulate matters and their significant tracers from biomass burning in an open-system combustion chamber. Chemosphere, 224, 407-416. https://doi.org/10.1016/j.chemosphere.2019.02.153

Chu, H.-J., Ali, M. Z., & He, Y.-C. (2020). Spatial calibration and PM2.5 mapping of low‑cost air quality sensors. Scientifc Reports, 10, Articl 22079. https://doi.org/10.1038/s41598-020-79064-w

Dejchanchaiwong, R., Tekasakul, P., Saejio, A., Limna, T., Le, T.-C., Tsai, C.-J., Lin, G.-Y., & Morris, J. (2023). Seasonal field calibration of low-cost PM2.5 sensors in different locations with different sources in thailand. Atmosphere, 14(3), Article 496. https://doi.org/10.3390/atmos14030496

Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89-121. https://doi.org/10.1214/ss/1038425655

Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F., Westervelt, D. M., Beekmann, M., & Subramanian, R. (2021). From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. Journal of Aerosol Science, 158, Article 105833. https://doi.org/10.1016/j.jaerosci.2021.105833

Hagan, D. H., & Kroll, J. H. (2020). Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmospheric Measurement Techniques, 13(11), 6343-6355. https://doi.org/10.5194/amt-13-6343-2020

Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1 (3), 297-318.

Hata, M., Chomanee, J., Thongyen, T., Bao, L., Tekasakul, S., Tekasakul, P., Otani, Y., & Furuuchi, M. (2014). Characteristics of nanoparticles emitted from burning of biomass fuels. Journal of Environmental Sciences, 26(9), 1913-1920. https://doi.org/10.1016/j.jes.2014.07.005

Hong, G.-H., Le, T.-C., Tu, J.-W., Chieh, W., Chang, S.-C., Yu, J.-Y., Lin, G.-Y., Aggarwal, S. G., & Tsai, C.-J. (2021). Long-term evaluation and calibration of three types of low-cost PM2.5 sensors at different air quality monitoring stations. Journal of Aerosol Science, 157, Article 105829. https://doi.org/10.1016/j.jaerosci.2021.105829

Hua, J., Zhang, Y., de Foy, B, Mei, X., Shang, J., Zhang, Y., Sulaymon, I. D., & Zhou, D. (2021). Improved PM2.5 concentration estimates from low-cost sensors using calibration models categorized by relative humidity. Aerosol Science and Technology, 55(5), 600-613. https://doi.org/10.1080/02786826.2021.1873911

Jain, S., Prestob, A. A., & Zimmerman, N. (2023). Using spatiotemporal prediction models to quantify PM2.5 exposure due to daily movement. Environmental Science: Atmospheres, 3, 1665-1677. https://doi.org/10.1039/D3EA00051F

Jainontee, K., Pongkiatkul, P., Wang, Y. L., Weng, R. J. F., Lu, Y.-T., Wang, T.-S., & Chen, W.-K. (2023). Strategy design of PM2.5 controlling for Northern Thailand. Aerosol and Air Quality Research, 23(6), Article 220432. https://doi.org/10.4209/aaqr.220432

Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., & Morawska, L. (2018). The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmospheric Measurement Techniques, 11(8), 4883-4890. https://doi.org/10.5194/amt-11-4883-2018

Jayaratne, R., Liu, X., Ahn, K. H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovski, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM2.5 sensors: an assessment of their suitability for various applications. Aerosol and Air Quality Research, 20, 520-532. https://doi.org/10.4209/aaqr.2018.10.0390

Jon, K. S., Huang, Y.-D., Sin, C. H., Cui, P.-Y., & Luo, Y. (2023). Influence of wind direction on the ventilation and pollutant dispersion in different 3D street canyon configurations: Numerical simulation and wind-tunnel experiment. Environmental Science and Pollution Research, 30, 31647-31675. https://doi.org/10.1007/s11356-022-24212-0

Lavanyaa, V. P., Varshini, S., Mitra, S. S., Hungund, K. M., Majumdar, R., & Srikanth, R. (2022). Geospatial modelling for estimation of PM2.5 concentrations in two megacities in Peninsular India. Aerosol and Air Quality Research, 22(7), Article 220110. https://doi.org/10.4209/aaqr.220110

Lee, C.-H., Wang, Y.-B., & Yu, H.-L. (2019). An efficient spatiotemporal data calibration approach for the low-cost PM2.5 sensing network: A case study in Taiwan. Environment International, 130, Article 104838. https://doi.org/10.1016/j.envint.2019.05.032

Lyu, B., Zhang, Y., & Hu, Y. (2017). Improving PM2.5 air quality model forecasts in China using a bias-correction framework. Atmosphere, 8(8), Article 147. https://doi.org/10.3390/atmos8080147

Margaritis, D., Keramydas, C., Papachristos, I., & Lambropoulou, D. (2021). Calibration of low-cost gas sensors for air quality monitoring. Aerosol and Air Quality Research, 21(11), Article 210073. https://doi.org/10.4209/aaqr.210073

McFarlane, C., Raheja, G., Malings, C., Appoh, E. K. E., Hughes, A. F., & Westervelt, D. M. (2021). Application of gaussian mixture regression for the correction of low cost PM2.5 monitoring data in Accra, Ghana. ACS Earth and Space Chemistry, 5(9), 2268-2279. https://doi.org/10.1021/acsearthspacechem.1c00217

Nalakurthi, N.V.S.R., Abimbola, I., Ahmed, T., Anton, I., Riaz, K., Ibrahim, Q., Banerjee, A., Tiwari, A., & Gharbia, S. (2024). Challenges and opportunities in calibrating low-cost environmental sensors. Sensors, 24(11), 3650. https://doi.org/10.3390/s24113650

Neal, L.S., Agnew, P., Moseley, S., Ordóñez, C., Savage, N. H., & Tilbee M. (2014). Application of a statistical post-processing technique to a gridded, operational, air quality forecast. Atmospheric Environment, 98, 385-393. https://doi.org/10.1016/j.atmosenv.2014.09.004

Noti, J. D., Blachere, F. M., McMillen, C. M., Lindsley, W. G., Kashon, M. L., Slaughter, D. R., & Beezhold, D. H. (2013). High humidity leads to loss of infectious influenza virus from simulated coughs. PLoS ONE, 8(2), e57485. https://doi.org/10.1371/journal.pone.0057485

Pani, S. K., Chantara, S., Khamkaew, C., Lee, C.-T., & Lin, N.-H. (2019). Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research, 224, 180-195. https://doi.org/10.1016/j.atmosres.2019.03.031

Park, D., Yoo, G.-W., Park, S.-H., & Lee, J.-H. (2021). Assessment and calibration of a low-cost PM2.5 sensor using machine learning (HybridLSTM neural network): Feasibility study to build an air quality monitoring system. Atmosphere, 12(10), Article 1306. https://doi.org/10.3390/atmos12101306

Raheja, G., Nimo, J., Appoh, E. K.-E., Essien, B., Sunu, M., Nyante, J., Amegah, M., Quansah, R., Arku, R. E., Penn, S. L., Giordano, M. R., Zheng, Z., Jack, D., Chillrud, S., Amegah, K., Subramanian, R., Pinder, R., Appah-Sampong, E., Tetteh, E. N., Borketey, M. A., Hughes, A. F., & Westervelt, D. M. (2023). Low-cost sensor performance intercomparison, correction factor development, and 2+ years of ambient PM2.5 monitoring in Accra, Ghana. Environmental Science & Technology, 57(29), 10708-10720. https://doi.org/10.1021/acs.est.2c09264

Raysoni, A. U., Sai, D. P., Mendez, E., Wladyka, D., Sepielak, K., & Temby, O. (2023). A review of literature on the usage of low-cost sensors to measure particulate matter. Earth, 4(1), 168-186. https://doi.org/10.3390/earth4010009

Salehi, M., Hashiani, A. A., Karimi, B., & Mirhoseini, S. H. (2023). Estimation of health-related and economic impacts of PM2.5 in Arak, Iran, using BenMAP-CE. PLoS ONE, 18(12), Article e0295676. https://doi.org/10.1371/journal.pone.0295676

Salimifard, P., Rim, D., & Freihaut, J. D. (2019). Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources. Aerosol Science and Technology, 54(2), 217-231. https://doi.org/10.1080/02786826.2019.1697423

Samae, H., Tekasakul, S., Tekasakul, P., & Furuuchi, M. (2021). Emission factors of ultrafine particulate matter (PM<0.1 μm) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere, 262, Article 127846. https://doi.org/10.1016/j.chemosphere.2020.127846

Sousan, S., Koehler, K., Thomas, G., Park, J. H., Hillman, M., Halterman, A., & Peters, T.M. (2016). Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Science and Technology, 50(5), 462-473. https://doi.org/10.1080/02786826.2016.1162901

Srishti, S., Agrawal, P., Kulkarni, P., Gautam, H. C., Kushwaha, M., & Sreekanth, V. (2022). Multiple PM low-cost sensors, multiple seasons’ data, and multiple calibration models. Aerosol and Air Quality Research, 23(3), Article 220428. https://doi.org/10.4209/aaqr.220428

Taimuri, B., Lakhani, S., Javed, M., Garg, D., Aggarwal, V., Mehndiratta, M. M., & Wasay, M. (2022). Air pollution and cerebrovascular disorders with special reference to asia: An overview. Annals of Indian Academy of Neurology, 25(Suppl 1), S3-S8. https:// doi.org/10.4103/aian.aian_491_22

Thepnuan, D., Chantara, S., Lee, C.-T., Lin, N.-H., & Tsai, Y. I. (2019). Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in upper South East Asia. Science of The Total Environment, 658, 708-722. https://doi.org/10.1016/j.scitotenv.2018.12.201

Tomášková, H., Šlachtová, H., Dalecká, A., Polaufová, P., Michalík, J., Tomášek, I., & Šplíchalová, A. (2022). Association between PM2.5 exposure and cardiovascular and respiratory hospital admissions using spatial GIS analysis. Atmosphere, 13(11), Article 1797. https://doi.org/10.3390/atmos13111797

Tsai, D.-R., Jhuang, J.-R., Su, S.-Y., Chiang, C.-J., Yang, Y.-W., & Lee, W.-C. (2022). A stabilized spatiotemporal kriging method for disease mapping and application to male oral cancer and female breast cancer in Taiwan. BMC Medical Research Methodology, 22(1), Article 270. https://doi.org/10.1186/s12874-022-01749-9

Vichit-Vadakan, N. & Vajanapoom, N. (2011). Health impact from air pollution in Thailand: Current and future challenges. Environmental Health Perspectives, 119(5), A197-A198. https://doi.org/10.1289/ehp.1103728

Wang, W.-C. V., Lung, S.-C. C., & Liu, C.-H. (2020). Application of machine learning for the in-field correction of a PM2.5 low-cost sensor network. Sensors, 20(17), Article 5002. https://doi.org/10.3390/s20175002

Weisserta, L. F., Albertib, K., Miskella, G., Pattinsonc, W., Salmondd, J. A., Henshawb, G., & Williams, D. E. (2019). Low-cost sensors and microscale land use regression: Data fusion to resolve air quality variations with high spatial and temporal resolution. Atmospheric Environment, 213, 285-295. https://doi.org/10.1016/j.atmosenv.2019.06.019

World Health Organization. (2024, October 20). Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_2

Yang, Z., Yang, J., Li, M., Chen, J., & Ou, C.-Q. (2021). Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O3: Evidence from 284 Chinese cities. Journal of Cleaner Production, 278, Article 123931. https://doi.org/10.1016/j.jclepro.2020.123931